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Abstract 
 
Millions of people play some fantasy sport and finding a way to create an optimal team to 
win the game is extremely difficult.  Fantasy Football Coach (FFC) attempts to predict 
player performance and analyze scoring and league specifications to allow managers to 
draft the best teams possible.  FFC employs three algorithms to enhance a manager’s 
preparation for the fantasy football season.  A pre-draft algorithm uses normalization and 
regression techniques to predict player performance and create a ranking of NFL players.  
A live-draft algorithm attempts to re-order the pre-draft lists as a live draft is occurring 
based on draft trends and other in-draft factors.  Finally, a trade evaluation algorithm 
allows managers to determine the benefit they receive from a trade.  The study concluded 
that the various algorithms employed yielded teams that were between 7% and 10% 
better than teams created using existing draft lists (ESPN, Yahoo, etc).  The conclusions 
imply that statistical research and methods can better predict player performance than 
subjective measures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



I. Introduction 
 

I.A. What are Fantasy Sports? 
 

Fantasy Football is a game in which a group of players create and manage their 
own football team.  Each player’s team consists of real NFL (National Football 
League) athletes that the players draft to be on their team. Once a real NFL player 
has been selected to be on a team, he may not be a member of any other team.  
The goal is to create the best possible team and at the end of the season, the 
manager with the best team wins the league championship. 
 
I.A.1. The Draft 
 
The way each manager creates his/her team is through a process known as a 
fantasy draft.  Every manager is assigned a “draft pick” at random.  The draft pick 
denotes the position at which the manager may choose a player.  The manager 
with the first pick in the draft has his/her choice of any player in the NFL.  The 
second manager will then pick from any player that remains.  This continues until 
the last manager has picked a player. At this point, every manager has selected 
one player and then the draft order reverses and continues. This means that the 
last manager to pick in round 1 receives another pick right after their first pick, 
i.e. the first pick in round 2. In this way, the draft “snakes” around as illustrated in 
Figure 1.  The draft continues until a team’s entire roster has been filled (typically 
between 15 and 21 players, depending on the settings of the league). 
 
 

 
 

Figure 1 – Illustration of “Snaking” Draft Progression 
 
 
I.A.2. Scoring 
 
Each week, a manager selects which of the players on their roster will “start” for 
their team that week. The rest of the players are “benched”.  Only players who are 
started will earn points for their team during that given week. The manager must 



select his/her starting lineup before the beginning of real NFL games that week. 
Once the lineup is set, it cannot be changed after live games have started.  Figure 
2 illustrates a sample roster of players that a manager drafts. 
 

POSITION PLAYER TD
PASS 
YDS 

RUSH 
YDS 

REC 
YDS FG PAT 

quarterback Peyton Manning 39 3745 121 0 0 0 
quarterback Kerry Collins 26 3200 345 0 0 0 
running back Deuce McAllister 11 0 1134 373 0 0 
running back Clinton Portis 19 0 1674 2128 0 0 
running back Warrick Dunn 9 0 899 555 0 0 
Wide receiver Torry Holt 11 0 0 1100 0 0 
Wide receiver Anquan Boldin 9 0 0 1254 0 0 
Wide receiver Rod Smith 7 0 0 900 0 0 
Wide receiver Ashley Lelie 5 0 0 875 0 0 
Wide receiver Wayne Chrebet 4 0 0 993 0 0 

tight end Jerramy Stevens 6 0 0 751 0 0 
tight end Jeremy Shockey 5 0 0 627 0 0 

kicker David Akers 0 0 0 0 29 34 
kicker Martin Gramatica 0 0 0 0 18 28 
   

Figure 2 – Illustration of a Sample Roster with Sample Statistical 
Performances (Simplified by reduced number of statistical categories) 
 

Of all the players available in the roster, the manager must choose who to start 
based on league roster restrictions.  A sample of a roster scheme is given in Figure 
3.  In the example league, since the manager can only start 1 quarterback and 2 
running backs, he may choose to start Peyton Manning in lieu of Kerry Collins 
and Clinton Portis and Deuce McAllister in lieu of Warrick Dunn.  Whenever an 
NFL player earns statistics in real life, (i.e. scores a touchdown, gains yards, 
throws a completed pass, fumbles the ball) these feats earn the player a varying 
number “fantasy points”.  Every player that a manager has designated as a starter 
will earn points for the manager’s team based on their real-life performance.  
Figure 4 illustrates the conversion of real life statistics to points. 

 
 

POSIT RTION STA ERS 
quarter 1 back 
running 2  back 
wide re 3 ceiver 

tight en 1 d 
kicker 1 

 
 

Figure 3 – Listing of a Sample League’s 
Starting Position Restrictions 

 
STAT IT TS ISTIC UN S P

TD 1 6 
PASS 5 1  YDS 2
RUSH 0 1  YDS 1
REC 1 YDS 10 

FG 1 3 
PAT 1 1 

 
Figure 4 – Listing of a Sample League’s 

Scoring Scheme 
 



For example, if a quarterback passes for 250 yards, he will earn 1 point for every 
25 yards passed, or according to the table, 10 points.  Figure 5 shows an example 
of the calculations require in the conversion from statistical output to fantasy 
points. 
 

 TD 
PASS 
YDS 

RUSH 
YDS 

REC 
YDS FG PAT  

Peyton Manning 39 3745 121 0 0 0  
Fantasy Point Formula 6*39 3745/25 121/10 0/10 3*0 0*1 Total 
Fantasy Point Total 234 149.8 12.1 0 0 0 395.9 
David Akers 0 0 0 0 29 34  
Fantasy Point Formula 6*0 0/25 0/10 0/10 3*29 34*1 Total 
Fantasy Point Total 0 0 0 0 87 34 121 

 
Figure 5 – Calculation of fantasy score from real statistics, given scoring 
scheme from Figure 4. 
 
Finally, each week, one manager’s team will be pitted against another manager’s 
team. At the conclusion of the games for the week, the fantasy team to have 
earned the most fantasy points from real life performances will be declared the 
winner for that week and will earn a win.  The team’s opponent will in turn, 
receive a loss. At the end of the season, (unless playoffs are used in the league) 
the fantasy team with the best win/loss record will be crowned the champion. 
 
I.B. Handling Variation 

 
A difficulty in analyzing and mastering fantasy sports lies in many sources of 
variance.  This study deals primarily with 3 forms of variance and attempts to 
account for 2 forms of variance and attempted to predict, or minimize the 3rd 
source of variance.  The three primary sources of variance that will be discussed 
in this study are variance in scoring scheme, roster restrictions and player 
performance.  The scoring scheme plays a very important role in which team wins 
a game during a given week.  Many different leagues have different scoring 
systems and this often changes the value of different players and different 
positions.  A second and equally important variation between leagues comes from 
the league roster composition.  The number of starters at any given position 
changes from league to league as well as the total number of roster slots. This 
changes the value of different positions and causes variations analyzing different 
leagues.  Finally, perhaps the most prevalent source of variation is the player 
performance itself.  While athlete performances can be projected, they are by no 
means certain. 
 
I.C. Current Applications 
 
There is no shortage of data available regarding player projections for upcoming 
years (ESPN.com, Yahoo.com, etc). There is also no shortage of listings that list 
players in terms of statistical output, by position. However, the main problem 



with this data is that it does not allow the user to use any of their own judgment 
when making modifications to the projections. While in the specific case of 
fantasy sports, statistical analysis is necessary, it is necessarily true that a purely 
objective approach will almost never be optimal since the statistics cannot take 
into account player slumps or breakouts. 

 
Additionally, a major shortcoming of the current approach is that while it may not 
be too difficult to analyze a league metric and rate various players in a given 
position, (yet very few applications do this) it is significantly more difficult to 
place players from every position into one comprehensive list, taking into account 
the relative values of different positions. This comprehensive list is necessary to 
give league managers an idea of which positions are more valuable than others.  
 
Finally, and possibly most significantly, there is a huge void in the area of live 
draft applications. There are no applications which give players updated rankings 
during a player draft. A major reason for this is because algorithms for doing this 
are by no means trivial. The algorithm requires information regarding the players 
and information about the draft, such as the players that have been taken and what 
teams have taken which players. 
 
I.D. Fantasy Sports Coach’s Innovation 

 
A major innovation offered by Fantasy Sports Coach is its ability to allow the user 
to determine what quantitative data to use and what subjective modifiers should 
be left to the user’s judgment. To date, the few fantasy sports applications that 
exist use their own algorithms to create a player list based on statistics, 
projections, and all quantitative criteria and end the analysis at that stage. Fantasy 
Sports Coach offers users the ability to add modifiers to players based on their 
personal feelings, hunches, or extra information that they have about a player that 
cannot be captured in statistics alone. Given that a purely objective approach will 
never be optimal (due to the large statistical variance in player performances from 
year to year), allowing players to use their own extra information to modify a 
baseline ranking (which was created via quantitative data) creates the possibility 
for better rankings. 

 
Fantasy Sports Coach brings unparalleled customization capability to the fantasy 
sports frontier. First, users can customize Fantasy Sports Coach to create player 
rankings based on the specific league format they play in. Users can specify the 
number of starting spots in a league, the number of bench spots, and every single 
detail of the scoring scheme of the league. Each of these pieces of information 
provides Fantasy Sports Coach valuable data that can be used to optimize player 
rankings. Second, users may manually add modifiers to players to move them up 
and down on the application-generated rankings.  This allows intangibles and user 
based predictions to be used in the statistical rankings, something that does not 
exist in any status quo applications. 
 



II. Algorithms  
 

II.A. Player Rating Algorithm (Pre-Draft) 
 

Pre-ranking players for a fantasy football league draft requires consideration of 
many factors. The first set of factors has to do primarily with the format of the 
league and the makeup of the teams. In our program, the user provides details 
concerning the scoring system of a league, the number of teams, and the positions 
included. 

 
When a fantasy league is created, a certain point value is assigned to each type of 
major accomplishment in football (i.e. touchdowns, rushing yards, receiving 
yards, passing yards, tackles, field goals, etc.). For example, at 1 point for every 
10 receiving yards and 6 points per touchdown, a wide receiver would gain 9.5 
points if he caught a 35 yard pass for a touchdown. Our ranking algorithm 
therefore first reviews the statistics of current NFL players over the number of 
years specified by the user, and calculates the number of points that each player 
would have scored under the scoring system provided for each year. To do so, 
each player is sorted into a container for his respective position, and the scoring 
system is consulted to determine his absolute output weight. The “weight” of a 
player can be thought of as a scaled number representing his value.  
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Figure 6 – Absolute output weight formula 

 
Above we see the “absolute output weight” (shown as WeightAO) as the number of 
points that the player would have scored over a certain number of seasons, 
augmented by declining percentage significance for each season after the most 
recent one. The number of seasons taken into account and the percentage assigned 
to each season can be set by the user, but is defaulted to 75% for the most recent 
season, 20% for the one prior, and 5% for the season before that. 
 
Once each position has its players ranked by absolute output weight, it is 
necessary to begin considering the more difficult problem of determining how 
best to compare a player in one position to a player in another. Unfortunately, this 
is not as simple as comparing the number of points achieved under the scoring 
system. Each position is unique, in that the offensive achievement of a player in 
one position could easily be more valuable to a team even though there are 
players in other positions that have more total points for a season. The reason for 
this boils down to averages: a player who produces significantly more than the 
average number of points for his position is usually more valuable to a team than 
a player who scores more points but whose production is similar to many others in 
his own position (this relates to the concept of “position scarcity” discussed in the 
Live Draft section). Because players are required for each position, it is important 



to create a team that produces well across each one. In this way, drafting only 
Quarterbacks (because they tend to score the most overall points) is useless since 
a team can only garner statistics for a given number of Quarterback roster slots. 
 
The most obvious solution to this issue is to take the average weight of each 
position and score each player in that position according to how well they do 
relative to the average. However, since there are only a certain number of players 
that actually start in each position for each team, taking the average across every 
player in a given position doesn’t provide an accurate benchmark to judge fantasy 
players by (as there would be many players included in the average that are near 
the bottom of their position and would never be drafted in the first place). 
Because of this, our algorithm creates positional averages only across “drafted 
players”. For a given position, this is equal to 1.5 times the number of starting 
slots (the extra 0.5 accounting for backup) multiplied by the number of teams in 
the league. Once the average is taken, all of the players in each position are 
assigned new weights based on the percentage of points they score above or 
below the average for their position. This is called the drafted average weight of 
a player. The formula for this new weight for the ith player is below: 

 
=kη (1.5 * # Starters for position k) 

=
kpμ Expected number of points scored by kη  players for position k  
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Figure 7 – Drafted average weight formula 

 
Though these new weights could conceivably be compared as is, the comparison 
would still not exactly provide a user with what he needs to have a good draft. 
Because different leagues assign a different number of slots for each position, 
each league has the potential to favor a different position. Thus, it is important to 
compute what percentage of a team’s total production can be expected from a 
given position. This is done by taking the average number of points for a given 
position and multiplying it by the number of starting slots for that position. These 
values are then summed to determine the expected average production of a team 
in a given league. Once this is done, the percentage of total production for each 
position can be computed. Every player’s drafted average weight is then 
multiplied by his respective position’s percentage, providing the relative average 
weight. 
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Figure 8 – Relative average weight formula 

 
 
Above, we define βk as the percentage of a team’s expected output that can be 
expected from position k (this is calculated for each of the n positions). This value 
is then multiplied by a player’s drafted average weight to created his relative 
average weight (WeightRAi above). With the relative average weight, it is now 
possible to compare a player in one position to another. The algorithm combines: 
 

• The total number of points a player would produce under the current 
scoring system 

• How well the player does compared to the rest of the players in his 
position 

• The expected total average output for a given player’s position on a team 
 

All of this is used to create a comprehensive ranking list of the players in NFL 
based which players would be most suited to a particular league’s configuration. 
 
For thoroughness, 4 different variations of the main algorithm were used in 
testing and a simplified version of our original algorithm was found to be 
superior.  All four algorithms are summarized here: 

 
 Algorithm 1: The main algorithm discussed above. 

Algorithm 2: Simplified algorithm which just ranks players based on their 
absolute output weight.  (Biases positions which score more, i.e. quarterbacks) 
Algorithm 3: Algorithm which rates players based on their relative average 
weight.  The number of players used in this average is a static number. 
Algorithm 4: Same as algorithm 3, except the number of players over which the 
average is taken is not static, but instead is dynamic and equal to the number of 
starting players of the given position (i.e. the drafted average weight is included 
as well). 
 
 
II.B. Live Draft Algorithm 

  
There are several issues to consider when re-ranking fantasy players in a live 
draft. The first is “position scarcity”. The idea of position scarcity in fantasy 
football is best illustrated by the tight end position. A tight end is an offensive 
player whose primary role it is to block for the quarterback or running back. 



Sometimes, however, the tight end will receive passes from the quarterback in 
either surprise plays or last-ditch efforts. Because of the scoring in fantasy 
leagues, the tight end is not judged by how good he is at playing his position (i.e. 
blocking effectively), but rather by his offensive production. Unfortunately, 
because of the position’s blocking responsibility, there are very few tight ends 
that are able to become star receivers. This makes the tight end position “scarce” 
in a fantasy league: there are a small number of stars that are a great deal better 
than the rest. 

  
After some analysis, it was decided that the best way to deal with the position 
scarcity issue during live drafting was to reprioritize the draft list every time a 
player in a “scarce” position is drafted to reflect the increased value of the 
remaining “good” players at that position. Here, a “good” but scarce player is 
defined as one that is several statistical deviations above his peers, with the rest of 
the players at his position having relatively similar statistics. To do this, a “drop 
score” was assigned to each player to reflect the percent difference between him 
and the next ranked player in his position. During a live draft, a bonus is assigned 
to scarce players by finding which player in each position in the rankings 
possessed the largest drop score. This player and every player in his position that 
is ranked above him is given a bonus that is scaled based on his drop score. 
Assuming pi is the score of the ith ranked player on the list, his drop score would 
be: 
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Figure 9 – Drop score formula 
 
To demonstrate, we will look at an example of the scarcity algorithm in progress. 
Let’s suppose that the algorithm is looking at the following eight quarterbacks, 
each with the given modified score and drop score for the 2004 season: 

 

Name Score
Drop 
Score

Peyton Manning 627 0.058 
Daunte Culpepper 592 0.591 
Donovan McNabb 372 0.489 
Trent Green 250 0.136 
Brett Favre 220 0.023 
Jake Plummer 215 0.075 
Jake Delhomme 200  ------------- 

 
Figure 10 – Drop scores example 

 
We find that the quarterback with the largest drop score is Daunte Culpepper, 
because his raw score is 1.591 times greater than Donovan McNabb’s. However, 
the algorithm only actually applies a bonus after a pick has been made. Let us 
now suppose that Trent Green is the first Quarterback taken. The following table 
is the result: 



Name Score
Drop 
Score

Peyton Manning 627 0.058 
Daunte Culpepper 592 0.591 
Donovan McNabb 372 0.692 

Brett Favre 220 0.023 
Jake Plummer 215 0.075 

Jake Delhomme 200 ------------- 
 

Figure 11 – Drop Score after removal 
 
Above, we now find that Donovan McNabb has the highest drop score. This 
means that he, Daunte Culpepper, and Peyton Manning will have their scores 
augmented by a factor of 1.692. This serves to better distinguish the great players 
in a given position than their original ranking scores would, so that a really 
excellent quarterback who might not score as many points as a running back still 
rises to the top. Below we see the results of the algorithm modification. 

 

Name Score
Drop 
Score

Peyton Manning 1061 0.058 
Daunte Culpepper 1002 0.591 
Donovan McNabb 630 1.863 
Brett Favre 220 0.023 
Jake Plummer 215 0.075 
Jake Delhomme 200  ------------- 

 
Figure 12 – Modified scores 

 
The formula for this modification is as follows: 

 
For all pi where i  indexOf {max[DropScore(QB≤ 1, QB2,…, QBn)]}… 
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Figure 13 – Formula for Bonus based off drop scores 

 
To avoid having certain players’ scores spiral out of control, and to give large 
bonuses only to the truly “scarce” players, the amount of bonus that a given 
player receives is divided by the overall pick in the draft at which the algorithm is 
being applied. For example, if the above table was to be modified with the 10th 
pick, the top three quarterbacks in the table would have their scores modified to 
[1+(1/10)(0.893)][(Player Score)]. 

  
A problem that often occurs during a live draft is what is called a “run” on a 
particular position. This is essentially a psychological effect, whereby one 
manager will pick a position that has not yet been touched in the draft, and the 



rest of the managers will follow suit. In football, this can often happen with tight 
ends, defensive players, or kickers – positions that are not heavily depended on 
but are nonetheless necessary to round out a team’s production. To address this 
issue, our algorithm keeps track of how many players at a particular position have 
been drafted in the last 1½ rounds. If a particular position makes up more than a 
user-determined percentage, the ranking algorithm will augment the value of 
players at the position to account for the detected run. The increase in value is 
calculated based on the number of teams participating in the draft. The more 
teams there are, the more the value of a good player at the run-on position will 
increase. In order to increase the chances that a manager will be able to get in on a 
position run before it’s too late, the algorithm also keeps track of when the first 
player at a given position is drafted. For a round after this event, all good players 
at this position are given a weight increase. 

  
During a live draft, it is also incredibly important to keep track of the positions on 
a team’s roster that have already been filled. If a team already has enough running 
backs to fill its starting positions, the value of running backs left on the board will 
be significantly less to that team. There are, however, a few factors that retain 
value for the remaining players at filled positions. In football, certain positions are 
particularly susceptible to season ending injuries (running backs, for instance). 
These positions must be backed up to avoid having to search the less qualified 
free agent pool later in the season. Another pro to having more than the required 
number of starters in a given position is that certain positions account for so much 
of a team’s production that it is a good idea to draft multiple good players and 
decide during the season which ones will pan out best. 

  
Due to their likelihood of injury and percentage of total team production the 
running back and quarterback positions are each set to require at least one backup 
in our algorithm. Therefore, the weight given to players in these positions will not 
begin to decrease until a team has at least one more player than is required at both 
quarterback and running back. A position’s value is decreased with respect to how 
useful the position’s production is to the team (determined earlier by the original 
ranking algorithm). If, for example, the average percentage of a team’s total 
points produced by wide receivers is 20%, the players remaining on the board in 
the wide receiver position will receive an 80% weight decrease. This way, once 
all starting positions have been filled, the positions will remain ordered by their 
percentage of average total production for a team. 

  
It is interesting to note the effect of other teams’ compositions in a live draft. A 
smart fantasy manager keeps an eye on what positions on the other teams have 
been filled. Below is an illustration of the way a typical live draft is structured. 
Let us suppose that we are in the fourth position in a five team draft. 

 
 
 
 



Odd Round – Forward Moving 

 
Even Round – Backwards Moving 

 
Figure 14 – Snake draft consequences 

 
For the sake of fairness, live drafts usually proceed in a “snake style”, with the 
team having the last pick in the first round receiving the first pick in the second 
round and so on. Suppose that our team still needs a running back, and we are 
considering drafting one in an odd round. This means that Team 5 will have the 
next two picks after us, and then we get to draft another player. If Team 5 already 
has his starting running back slots filled, it becomes very much less likely that he 
will draft a running back with his next two picks. This means that we can take a 
better player in another position before Team 5 does, and probably still get to take 
the running back that we wanted in the following round. 

  
To account for this, the Live Draft algorithm assigns a penalty to a position that is 
filled for each team following the user’s team in a particular round. The penalty 
itself is reduced by the number of teams there are following the user in a given 
round. This is because the more teams there are remaining, the more likely it is 
that one of them will draft a backup. For example, the penalty assigned to running 
backs in an odd round if Team 5 has his running back slots filled will be less than 
if Teams 1, 2, and 3 have their running back slots filled in an even round. 

  
To counter the decrease in a given round, there is also an increase to return a 
given position to its original value if teams on the other “side” of the user do not 
have their starting slots for that position filled. To illustrate, let us suppose that 
Team 5 has his running back slots filled, but Team 2 does not. Let us also suppose 
that the penalty assigned to running backs on the Team 5 side is that their scores 
are reduced to 80% of their original value. 

 



 
 

Figure 15 – Bonuses based on draft position 
 
Here we see that just before our team has a pick in the odd round, the scores of all 
running backs are reduced to 80% of their original. However, because Team 2 
does not have his running back slots filled, a bonus of 125% is assigned to the 
running back position to return it to normal. In this way, we are not likely to risk 
skipping a quality running back again, since Team 2 still needs one. 

 
As it is above, the penalty assigned to a given position is determined by the 
number of teams in the draft, and how many there are following the user’s team in 
a given round. The formula for the penalty is as follows: 
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Figure 16  - Penalty formula 

 
If there are 5 teams in the draft, and 1 following the user in a round that has a 
given position filled, the position’s value will decrease by 1/5 (or, 20%).  
 
 
II.C. Trade Evaluation 
 
An important algorithm developed by Fantasy Football Coach is its trade 
evaluator.  This feature allows the utility of the application to transcend the draft 
day.  The trade evaluator not only handles the trivial case of 1 player for 1 player 
trades, but also adeptly analyzes multi-player trades.  When players are traded 
from one team to another, the sum or even the average of the absolute, total 
output of the players is not of much consequence.  Instead, the correct 
methodology is to identify the total expected output of a roster before the trade, 



and after the trade.  These methods are quite different because some trades require 
shuffling of a roster due to a limited number of starting slots. 

 
The concept of expected output is a very important one when it comes to trades.  
The goal of a trade is to increase the fantasy point output of one's team.  The 
expected fantasy point output of any given player is calculated by taking the 
overall expected fantasy point output of the player, dividing it by 16 (the number 
of games in an NFL football season) and then multiplying this quantity by the 
number of games the player has left (adjusted for bye weeks when the player’s 
team does not have a game).  This new quantity is called a player’s expected 
fantasy point output, for the remainder of the season.  For the remainder of this 
section, we will refer to this quantity as the expected output of a player. 

 
Now, to discuss the specifics of the trade evaluator, the first case will be the 
trivial case of a 1 for 1 trade.  With players of the same position, there is no need 
to look any further than the expected output of the players being traded.  The team 
which receives the player with the highest output is receiving the better side of the 
trade and it is not possible for the trade to, on face, be beneficial for both teams.  

 
In the slightly more complex case, 1 player from each team is traded, with each 
player being of a different position.  In this scenario, suppose team Ta is trading 
away player Pa who plays in roster slot Ra and Tb is trading away player Pb who 
plays Rb.  For Ta, the benefit is calculated by taking the expected output of the 
team after the trade, and subtracting it from the expected output of the team after 
the trade.  More specifically, the algorithm takes the roster for Ta and removes 
player Pa from the roster.  Next, player Pb is added to the roster of Ta.  Then the 
roster is sorted, first by position, then by expected output (descending order).  
Once the roster is sorted, the algorithm selects the top Nr players, for each 
position R, where NR is equal to the number of starting players that play position 
R.  Then the expected outputs of the (NQB + NRB + NWR + NTE + NK) selected 
players are summed to yield the roster’s total output.  This is compared to the 
previous output to determine if the trade is beneficial to the team. 

 
Below, the asterisked player is the player that is being traded away from each 
team.  The figure shows that the player that Tb is trading away has an expected 
output (210.4) that is significantly higher than the player that Ta (167.3) is trading 
away.  For Ta, it replaces it’s traded player WRS, with expected output 167.3, with 
the WRB player with output 152.3 for a net loss of 15.0.  Then, TB a replaces its old 
RBS with expected output 149.5, with Tb’s RBS player with expected output 210.4.  
This is a net gain of 60.9, for a total gain of 45.9.   

  
 
 
 
 
 



Ta         Tb 
Pre-Trade                Pre-Trade 

 
Roster Slots Output

QBS 308.4 
RBS* 210.4 
WRS 129.5 
QBB

Roster Slots Output 
QBS 321.2 
RBS 149.5 

WRS * 167.3 
QBB B 192.3 

RBB

B 178.6 
RBBB 132.4 
WRB

B 185.3 
WRBB 112.4 

STARTER 
SUM 

648.3 
B 152.3 

STARTER 
SUM 

638.0 

 
 

Ta         Tb 
 Post-Trade               Post-Trade 

 
Position Output

QBS 308.4 
RBS 185.3 
WRS 167.3 
QBB

Position Output 
QBS 321.2 
RBS 210.4 
WRS  152.3 
QBB B 192.3 

RBB

B 178.6 
RBB B 129.5 

WRB

B 132.4 
WRB B 112.4 

STARTER 
SUM 

661.0 
B 149.5 

STARTER 
SUM 

683.9 

 
Figure 17 – Before and After Trade Algorithm 

 
 

For Tb, the loss of RBS  requires the replacement with RBB, with an output of 
185.3, for a net loss of 25.1.  Then, T

B

b’s WR_Starting is replaced with the newly 
acquired WRS  from team A, for a net gain of 37.8.  For Tb, this yields a total gain 
of 12.7 points. 

 
Finally, the general case for the trade evaluator will be discussed.  The general 
case is just an extension of the 1 for 1 case, with more calculations involved.  The 
steps are outlined below. 

 
 
 
 
 
 
 
 



Step 1:  
For each roster, sort by position first, then by expected output, in descending 
order. 
 

Player io u Posit n Outp t 
B QB 9.8 21
H WR 2.8 12
I WR 1.6 10
A QB 7.3 32
D RB 7.5 16
F WR 8.9 13
C RB 7.3 19
J WR 6.2 9
E RB 1.2 12
G WR 2.9 13

 
Unsorted 

Player io Posit n Output 
A QB 7.3 32
B QB 9.8 21
C RB 7.3 19
D RB 7.5 16
E RB 1.2 12
F WR 8.9 13
G WR 2.9 13
H WR 2.8 12
I WR 1.6 10
J WR 6.2 9

 
Sorted 

 
Figure 18 – Sorting of Roster 

 
Step 2:  
For each position, select the top NR players (where NR = # of starting roster spots 
for position R).  The following example assumes 1 QB, 2 RB, and 3 WR will 
start.  The shaded players are selected to start. 
 
Step 3:  
Sum up the expected output for the selected players on each team and denote 
them O1B (Output of Team 1 before trade) and O2B (Output of Team 2 before 
trade). 
 
 

Player Position Output 
A QB 327.3
B QB 219.8 
C RB 197.3
D RB 167.5
E RB 121.2 
F WR 138.9
G WR 132.9
H WR 122.8
I WR 101.6 
J WR 96.2 

O1B 1086.7 
 

Figure 19 – Selection of starting players from sorted roster 
 
 



Step 4:  
For each of the teams, subtract the players being traded away.  For the purposes of 
our example, we will be trading away players A and D for players Y and Z. 
 
Step 5:  
For both of these modified rosters, add the players being traded to the team.  We 
are only following team 1, but the process is analogous for team 2, where we 
subtract players Y and Z, and players A and D. 
 

Player Position Output 
B QB 219.8 
C RB 197.3 
E RB 121.2 
F WR 138.9 
G WR 132.9 
H WR 122.8 
I WR 101.6 
J WR 96.2 
Y QB 300.2 
Z RB 198.3 

 
Figure 20 – Roster after subtraction of traded  

players and addition of new players 
 
 

Step 6:  
Sort the rosters first by position, then by expected output, in descending order. 
 
Step 7:  
For each position, select the top NR players (where NR = # of starting roster spots 
for position R). 
 
Step 8:  
Sum up the expected output for the selected players on each team and denote 
them O1A (Output of Team 1 after trade) and O2A (Output of Team 2 after trade).  
In figure 21 the final roster is shown, with shaded players denoting the starters 
and the output of the roster after a trade. 
 
 
 
 
 
 
 
 
 
 



Player Position Output 
Y QB 300.2
B QB 219.8 
Z RB 198.3
C RB 197.3
E RB 121.2 
F WR 138.9
G WR 132.9
H WR 122.8
I WR 101.6 
J WR 96.2 

O1A  1090.4 
 

Figure 21 – Final roster of team 1, after trade 
 

Finally, the evaluation is done using 2 criteria.  First, the improvement in one’s 
own team is calculated, and second, the improvement in the other team is 
calculated.  First, in order for Fantasy Football Coach to approve a trade, O1A > 
O1B must be true.  In other words, the trade must benefit one’s own team.  A 
secondary rule can be added by the user:   O1A - O1B  >  O2A – O2B.  In other 
words, in addition to the trade benefiting one’s own team, it must benefit one’s 
own team more than it benefits the opponent. 

 



III. Evaluation 
 

III.A. Pre-Draft Algorithms 
 

Now that we have created an algorithm to create a draft list, it is our burden of 
proof to show that this algorithm creates a “better” draft list than the other draft 
lists offered in the status quo.  The first task at hand is to find a way to “compare” 
two different draft lists to see which one is better than the other.  Since a Fantasy 
Football team’s success is based directly on the output of players, we need to find 
a mechanism to transform a static draft list into a team that is created, based on 
that list.   

 

 
Figure 22 – Testing Methodology 



Once a team is created for each draft list, we can compare the actual output of the 
given teams to find out which team is better.  The draft list which consistently 
yields the best team can be deemed to be superior. 

 
For the purposes of testing, it is not prudent to have a deterministic algorithm to 
create a team from a list.  The reason for this is multi-pronged.  First, a 
deterministic algorithm would mandate that a unique team be created from a draft 
list, which is definitely not the case, since during a draft, while players generally 
follow the list, some small deviations, and sometimes large deviations do occur.  
Second, if the deterministic algorithm happens to select a player that severely 
overperformed, underperformed, or was injured during the upcoming season, then 
the team that is created from that list, will have an unfair advantage, or 
disadvantage over an algorithm that might be better, in the general case.  For this 
reason, a random element must be added to the algorithm. 

 
The algorithm to transform a draft list into a team entails a few steps.  The draft 
list is first split into tiers, or draft rounds.  The size of the tiers is equal to the 
number of teams in the league.  For example, if there are 5 teams in a league, 
players 1-5 are in tier 1, 6-10 are in tier 2, etc.  This tier system is illustrated in 
Figure 23. 
 

 Player 
Relative 

 WgtAvg. . 
P1 457 
P2 450 
P3 438 
P4 429  T

ie
r 1

 

P5 426 
P6 420 
P7 418 
P8 392 
P9 390 Ti

er
 2

 

P10 385 
P11 382 
P12 380 
P13 371 
P14 369 Ti

er
 3

 

P15 358 
P16 347 
P17 334 
P18 329 
P19 312 Ti

er
 4

 

P20 303 
  … …

 
Figure 23 – Tiered system used for 

creating random rosters from a draft list 

 
 

 Select a player at random from tier 1. 
 
 
 

 Select a player at random from tier 2. 
- If player selected is of a position already 
filled, find the closest player who occupies 
an unfilled position 
 
 

 Continue until all roster spots are 
occupied. 
 
 
 

 
 
A player is selected at random from a tier.  This simulates a player drafting a 
player in round 1, 2, etc, once for each tier.  This system proceeds until all roster 



slots have been filled.  However, this “dumb” algorithm has a flaw in that it does 
not account for intelligently filling roster slots correctly.  To deal with this the 
algorithm makes sure that players to fill all starting roster slots are taken first.  If 
the random player selected plays a position that the team does not need, a player 
closest to the selected player that plays a position that the team does need is 
selected.  Once all starting slots are filled, the algorithm continues, making sure 
that all bench slots are filled. 
 
Now that a roster has been created based on the draft lists to test, we must 
determine how to measure how “good” a roster is.  To do this, we will take the 
actual performance of the players during the year for which this draft list was 
created.  For example, if the draft list was created for the 2004 season, we would 
use actual statistics from the 2004 season to see how the teams actually did.  
Using the player statistics for the appropriate year, and using league settings to 
determine point values for statistics, we create the actual outputs of the players on 
each roster.  The sum of each starting player’s output is taken and then the sum of 
each bench player’s output times one-half, is taken.  Once these values are 
summed, we obtain the output of the roster.  This will be the metric that is used to 
rate a roster.  This is analogous to the formula in Figure 6, when the expected 
output was calculated for various players.  The only difference here is that 
statistics that we already know to be accurate are used, this producing an actual 
output statistics, rather than an expected output statistic. 

 
Now, to test the different draft lists, the algorithm was run multiple times on each 
list.  Each of the roster’s outputs was taken and recorded.  The experimental data 
below is for a league of 10 teams, with each team comprised of 1 starting 
quarterback, 2 starting running backs, 3 starting wide receivers, 1 starting tight 
end, 1 starting kicker, and for bench players, 1 quarterback, 2 running backs, 2 
wide receivers, 1 tight end, and 1 kicker.  Expected player outputs were calculated 
using a declining historical weighting with 2004 weighted 75%, 2003 at 20% and 
2002 at 5%.  The true values were calculated using 2005 statistical performances.  
A sample of the experimental values are shown in the table below. 

 
Trial # Alg1 Alg2 Alg3 Alg4 ESPN 

1 1317.3 1583.2 1030.0 1144.6 1199.3 
2 1556.5 1290.9 1496.7 1107.4 1720.5 
3 1506.8 1475.3 1190.2 1679.4 1387.3 
… … … … … … 

999 1342.1 1431.6 1301.6 1481.3 1354.2 
1000 1183.4 1614.7 1313.9 1291.7 1427.9 

Mean: 1407.8 1450.6 1415.5 1436.9 1310.4 
Std Dev: 179.0 170.8 180.0 180.4 174.2 

 
Figure 24 – Test Results 

 
 



As shown in the Figure 24 above, all 4 of the designed algorithms outperformed 
ESPN.com’s draft list in the tests according to the mean output of the rosters.  The 
following table shows the aggregate percentage improvement in using each of the 
algorithms, over ESPN.com’s draft list.  A p-value is also included, which 
represents the probability that the algorithms actually have the same performance.  
Obviously, smaller p-values denote a higher probability that the given algorithms 
outperform the ESPN list. 

 
Algorithm % Improvement P-Value 

1 7.43% < 2.2E16 
2 10.69% < 2.2E16 
3 8.02% < 2.2E16 
4 9.65% < 2.2E16 

 
Figure 25 – Improvement over ESPN Draft List 

 
 
 III.B. Live Draft Algorithm 
 

Testing and tweaking of the Live Draft algorithm proved difficult, to say the least. 
This was mostly because there is no other application currently in existence that 
shifts rankings during the progress of a draft, so there wasn’t anything to compare 
our algorithm iterations to. It was decided that since our goal was to prove our 
application superior to common drafting techniques, that we would obtain a list of 
the pre-ranked players for the 2005 season as determined by ESPN experts. Since 
most fantasy users use a similar ranked list to make their decisions on draft day, a 
set of rules was created so that every team except for the one that we designated 
would use the ESPN ranked list.  

  
Our designated team would use the top ranked player assigned to him at the time 
by the Live Draft algorithm. To avoid having one of the “ESPN Teams” take too 
many players in one position, we assigned a number of designated starting and 
bench slots for each team. The team would then find the top ranked player 
remaining on the ESPN list who was in a position that was not already completely 
filled (starters and bench) with a random normalized probability. This was 
actually very representative of normal drafting strategy, and it gave us a good idea 
of how well our algorithm would perform in a real draft. 

  
In order to evaluate success or failure, and the relative merits of the different parts 
of the Live Draft algorithm, a draft was designed with seven teams (in which our 
designated team was randomly assigned a draft position). After the draft, each 
team had its top players evaluated by finding the number of points each player 
actually scored during the 2005 season (our algorithms ran on pre-season stats). 
Each draft run was set with the same parameters, which were as follows: 
 
 
 



 
 
Position # Starters 
Quarterback 1 
Running Back 2 
Wide Receiver 3 
Tight End 1 
Kicker 1 

 
 
 
 
 
 
 

Accomplishment Score 
10 Receiving Yards 1 
10 Rushing Yards 1 
25 Passing Yards 1 
Touchdown 6 
Interception Thrown -2 
Fumble Lost -2 
FG 0-19 Yards 1 
FG 20-29 Yards 2 
FG 30-39 Yards 3 
FG 40-49 Yards 4 
FG 50+ 5 
Extra Point Made 1 

 
Figure 26 – Draft Test Parameters 

 
 
The first test of the Live Draft algorithm tested only took filled position 
bonuses/penalties into account for a user’s team. This means that neither position 
scarcity nor the composition of other teams was considered. Below is an example 
of one of the runs, displaying the top 9 players taken by each team, and his raw 
score for the 2005 season. Here, the algorithm is running on Team 5: 
 

TE  AM 1 
La 30Dainian Tomlinson 1.2
Cli 23nton Portis 5.20001
Co 16rey Dillon 7.40001
An 17tonio Gates 0.1
Re 13ggie Wayne 5.5
Ro 11y Williams 6.7
La 20rry Fitzgerald 0.9
De 12rrick Mason 3.3
Ch 17ris Chambers 3.8 

TEAM 2  
Priest Holmes 106.8 
Terrell Owens 112.3 
Marvin Harrison 186.6 
Tony Gonzalez 102.5 
Andre Johnson 78.8 
Michael Bennett 81.700005 
Carnell Williams 157.90001 
Donald Driver 152.1 
Jerry Porter 124.2  

 
TEA  M 3 
Deu 63.2ce McAllister 
Ran 148dy Moss .5
Ahm 40.2an Green 
Joe 67.4 Horn 
Hine 161s Ward .5
LaM 222ont Jordan .8
Jas 111on Witten .7
Alge 115 Crumpler .7
Plax 161ico Burress .4

 
 

 
TEAM 4  
Shaun Alexander 361.8 
Kevin Jones 107.3 
Julius Jones 147.1 
Javon Walker 2.7 
Darrell Jackson 66.2 
Steve Smith 228.3 
Jeremy Shockey 131.1 
Ashley Lelie 83 
Eric Moulds 105.6  



 
 



TEAM 5  
Peyton Manning 298.38
Daunte Culpepper 89.259995
Curtis Martin 113.3
Ricky Williams 117.600006
Muhsin Muhammad 99
Domanick Davis 165.3
Drew Bennett 97.8
Adam Vinatieri 104
David Akers 78 

TEAM 6  
Jamal Lewis 123.7 
Edgerrin James 266.30002 
Steven Jackson 190.6 
Chad Johnson 197.2 
Anquan Boldin 180.2 
Michael Clayton 37.2 
Dallas Clark 72.8 
Todd Heap 125.5 
Jimmy Smith 138.3  

 
TEAM 7  
Tiki Barber 303
Willis McGahee 170.5
Rudi Johnson 226.8
Torry Holt 185.1
Nate Burleson 38.8
Laveranues Coles 114.5
Isaac Bruce 70.5
Randy McMichael 86.2
Rod Smith 142.5 

 

 
Figure 27 – Team Compositions for Mock Live Draft 

 
In this run, we see the way luck plays into fantasy sports. One of the algorithm’s 
picks was Daunte Culpepper, who was fantastic in the 2004 season.  
Unfortunately, injury and the loss of his star receiver for the 2005 season severely 
reduced his numbers. This run teaches us the lesson that sports will always be 
unsure. Averaging the seven runs together, we find the first version of the 
algorithm somewhat wanting, as its expected results under perform the average 
team score by just under 10%.  

 
 

1st Live Draft Avg. Expected Score Avg. Score of Other Teams 
Percentage 
Difference 

1511.4 1673.9 -9.70% 
P-Value: 2.2*10-16 

 
The next set of runs of the Live Draft algorithm included the position scarcity 
bonus as determined by a player’s “drop score”. As discussed earlier, the scarcity 
bonus increases the value of players that are particularly excellent within their 
position by finding the point at which the biggest percentage drop occurs between 
positional player scores. Once this is done, all positional players above the “big 
drop” player receive a bonus relative to the high drop score. The results obtained 
after seven runs of the “scarcity bonus” algorithm are below: 
 

 



2nd Live Draft Expected Score Avg. Score of Other Teams 
Percentage 
Difference 

1700 1584 6.82% 
P-Value: 2.2*10-16 

 
We see that adding the scarcity bonus definitely adds an improvement over the 
previous algorithm. This is likely because overachieving players in less prominent 
positions are seeing the light of day in the draft list much earlier on. 

 
Finally, we tested the third incarnation of the Live Draft algorithm. This included 
the consideration of other teams’ compositions in making a decision (along with 
the scarcity bonus). Because of the way in which the draft was designed, this 
added feature helped a great deal. The automated players were very unlikely to 
draft positions that they had already taken, and the designated team profited from 
this immensely by holding off on certain high-value players that could be 
obtained in a later round. The results of the “team composition” algorithm test are 
below: 

 

3rd Live Draft Expected Score Avg. Score of Other Teams 
Percentage 
Difference 

1767.12 1592 10.00% 
P-Value: 2.2*10-16 

 
It is clear that the third algorithm, including consideration of other teams’ 
compositions and position scarcity, is the best. A 10% difference in average score 
is an enormous advantage to look forward to on draft day. 

 



IV. New User Interface Model 
 

IV.A. GUI Model 
 

Developing software requires that a choice be made regarding a user interaction 
model.  The primary choice for this model is that of a desktop application.  In this 
model, a program runs in a dedicated window drawn by a toolkit such as Java's 
Swing or GTK.  Another choice is to run the application on a web server using 
tools such as Java's J2EE package or PHP.  Both of these choices have positive 
and negative aspects to them which will be explored further. 

 
 

IV.B. Application 
 

The application model is the most familiar model to users.  An application based 
GUI allows the interface to run from local code.  Since this generally requires no 
data transfer across a network, this is the most responsive method in which to 
create a user interface.  The fact that the GUI runs on a different machine than 
that on which the data is stored presents challenges in writing a  potentially 
complex network subsystem to allow the GUI to communicate with the server in a 
secure manner.  Also of concern is the fact that if the client application is written 
in Java, the compiled code is easily decompiled into source, exposing any 
proprietary algorithms that may have been developed.  If it was decided that the 
client application had to include the algorithms (as opposed to having a server 
process the data as well as host it) this would likely have to be done in a purely 
compiled language such as C or C++.  This is then less portable than Java and 
requires additional coding to support multiple operating systems.  As well, 
creating a client-side application promotes situations in which different clients 
may be running different versions of the application.  This can be solved through 
a system of automatic updates, but this still requires addition coding and raises 
privacy concerns.   

  
 
 IV.C. Web Application 
 

One method to eliminate some of the shortcomings of the application model is to 
create software that is entirely based on a server, allowing users to connect via 
any web browser.  By hiding all code behind a web page, it is far less likely that 
proprietary algorithms will be inadvertently made available to the public.  This 
can be accomplished by using tools like PHP and its related Apache module or a 
Java Application Server like Tomcat or Jboss.  This model has security benefits as 
well, because far less data is being transmitted over a network.  Even though there 
has been a recent rise in the number of web applications available to the public 
(GMail, etc.), it is still less familiar to many users than a standard windowed 
application.  Another possibility is to create a web application that uses a Java 
applet to do the windowing.  This proves difficult, however, because there is still 



the issue of communication with the data server to overcome.  An applet, as well, 
requires a sizable download to the client browser before it displays, far longer 
than if the application had used standard lightweight markup to render directly in 
the browser window. 

 
 

IV.D. Windowed Web Toolkit 
 

To avoid the compromises that must be made to employ one of the existing user 
interface models, we devised and implemented a new model.  Our user interface 
appears graphically as though it is a standard windowed application, but it exists 
solely in the context of a web browser instance.  What differentiates this method 
from running an applet in a browser is that our windowing toolkit is implemented 
entirely in JavaScript, HTML, and CSS.  This choice of lightweight markup and 
scripting languages allows our toolkit to render quickly and require a minimal 
amount of data to be transferred from the server to the client. 

 

 
 

Figure 28 – Windowed Web Toolkit Specifications 
 
 
IV.D.1. Markup Language Components 

 
The additional markup required to use the windowing toolkit was consciously 
kept to a minimum to allow for greater ease of use.  The only necessary overhead 
is loading the toolkit’s JavaScript file for each page that will use the GUI 
components.  After this script is loaded, each call to loadGuiComponent(name, 
parameters) will cause the server to return code representing the component in a 



displayable format such as HTML.  The loadGuiComponent function calls 
methods from a JavaScript XMLHttpRequest object.  These calls set up and send 
a POST request to a web server.  Our loadGuiComponent function does not wait 
for the server to complete the request; instead, all component loads set up a 
handler to receive the data in the form of a callback function.  After getting a 
response, the callback function is in charge of parsing the response and inserting 
the markup language into the document in an appropriate location. 

 
 
IV.D.2. Server Side Components 

 
To implement this toolkit, several server-side components needed to be put in 
place.  The first necessary piece is that which communicates with the clients.  
This communication channel is implemented as an extension of the J2EE 
HTTPServlet class.  As the request is received, it is parsed to determine which 
component is being loaded.  The loader then searches for the XML template 
corresponding to that component.  Should the template not be found, an error is 
returned.  Pending a successful loading of the template file, the necessary 
parameters are then inserted into the template and valid markup language is 
returned.  The request handling and response are handled asynchronously to 
maximize the server’s utilization and minimize the total wait time to all clients, 
not just one particular client.   

  
We chose a hierarchical file format for our template because it more closely 
matched the target data than did a flat file.  To illustrate this format, the following 
is a representation of the standard HTML anchor tag.  While this example is not 
of any practical value, it is conceptually identical to larger components.   

 
<content> 
    <a> 
        <href>$PARAM1</href> 
        <text>$PARAM2</text> 
    </a> 
</content> 

 
As this file is read, each content block signifies a new level in the hierarchy.  Tags 
beginning with a ‘$’ are read as variable and replaced in order with one of the 
parameters passed to the component loader.  Text blocks are interpreted as visible 
text that would exist between the open and close tag and all other parameters are 
placed inside the open tag of the node.  This yields: 

 
<a href=$PARAM1>$PARAM2</a> 

 
The process of loading a GUI component does not depend on any data that is held 
in server memory; each component load is done from the disk.  This allows our 
toolkit to be dynamically extensible without requiring a server restart to add new 
components.  The only required operations to add a component to the server’s 
archive are the creation of the XML template and the modification of the markup 



language from which the component will be loaded.  In fact, though the XML 
templates are currently stored locally on the server, it is a simple matter to allow 
markup language to load remote template files, thus making it possible to use pre-
constructed archives of GUI components for rapid site development. 
 
IV.D.3. Usage 
 
Using the toolkit’s loadGuiComponent requires passing a component name and 
component parameters as arguments.  The parameters string serves two functions.  
First, the end of the string is a comma separated list of whatever parameters need 
to be fed to a component to make it function.  The first comma separated token of 
the string, however, is the id of a page element within which the component 
should be loaded.  As an example, let us take this simple web document: 
 

<html> 
 <script type="text/javascript" 
src="js/GUI.js"></script> 
 <body> 

<table> 
  <tr> 
   <td>New Link</td> 
   <td id=”insertHere”></td> 
  </tr> 
 </table> 

 </body> 
<html> 

  
If we were to place a script to load a link from the template as specified above 
into this page: 
 
 <script type="text/javascript"> 
  loadGuiComponent(“link”, 
“insertHere,www.jhu.edu,JHU”); 
 </script> 
 
This load would cause the callback() function in the GUI JavaScript library to 
place the HTML version of the link inside the tag whose id is insertHere.  This 
specification allows complex layouts to be managed in whatever method the user 
would demand.  We feel that this allows for as much layout control as is possible 
in existing windowing toolkits like Swing.   
 
The requirement of a component to have a parent tag raises the question of what 
to do about windows, as they have no logical parent in a layout.  The solution to 
this is to create a division within the body of the page that will become the parent 
tags for all created windows.  The bare document, before any windows are 
created, would be constructed as follows: 
 

 
 
 



 
<html> 
 <script type="text/javascript" 
src="js/GUI.js"></script> 
 <body> 
  <div id=”windowSet”></div> 
 </body> 
<html> 

  
The actual windowing implementation is accomplished using a wrapper for an 
inline frame.  This method allows our windows to display any content that can be 
displayed in a standard web browser (this includes other uses of our windowing 
toolkit).   

 
 
IV.D.4. Examples and Analysis 

 
There are existing libraries that allow dynamically peaceable web content; we, 
however, feel that we have a distinct advantage over these solutions.  Projects 
such as YouOS, Orca, EyeOS, and Fold offer users the look and feel of a desktop 
on a webpage, however, these solutions only provide lightweight windows which 
are limited to specialized content.  Below is a screenshot from one such web 
desktop, Fold.   
 
 

 
 

Figure 29 – Screenshot of Fold 
 

 
 
 
When compared to our web windowing toolkit, shown below, Fold is certainly 
more visually impressive, however, it is in the background that our design 
differentiates itself.  Our web windowing toolkit is capable of displaying any pre-



written web content as well as any code that will be developed for use with the 
toolkit.  This heavier weight rendering capability allows dynamic content to be 
loaded directly into a window as if it were a new browser window or desktop 
application.  Competitors such as fold are limited to simple layouts of images and 
text. 

 

 
 

Figure 30 – Screenshot of Fantasy Football Coach 
 

 
  
 



V. Conclusion 
 
 V.A. Findings 

 
After rigorous testing of the algorithms, we have determined that there is a 
statistically significant (as shown by the p-values) difference in the performance 
of teams drafted with an algorithm generated list, as opposed to ESPN’s list.  The 
pre-draft algorithms offered a roster output that is 7.43, 10.69, 8.02, and 9.65% 
greater than rosters created by the ESPN list.  While a subjective aspect of sports 
will always exist, this study sought to prove that a balance between user-defined 
subjective factors and quantitative analysis would provide results superior to that 
of subjective factors alone. 
 
The second algorithm, which selected the player with the highest projected output 
performed the best as compared to the ESPN list.  The reason for this most likely 
lies in the workings of the algorithm itself.  Since the algorithm picks players 
based on highest absolute output, it takes relatively little information into account 
about position scarcity.  Since the test league that was used has very loose roster 
restrictions, it did not hurt the second algorithm much.  Given a more strict 
league, the performance of the second algorithm should decline considerably. 
 
V.B. Advancements 
 
We have used metrics that have yet to be considered quantitatively in the Fantasy 
Sports world.  Position scarcity has always been a hot topic of debate and scarce 
position players always have premium value on draft day.  However, there has yet 
to be discussion or study into how much of a premium should be placed on scarce 
position players or in the converse case, what discount should be placed on 
players who play a deep position.  The pre-draft algorithm’s use of an “average 
output over drafted players” illustrates a new concept that captures position 
scarcity and allows a drafter to determine what affect a player’s position should 
have on his draft position. 
 
V.C. The Future 
 
Future plans for Fantasy Sports Coach center largely around expansion of its 
scope into the domain of other popular fantasy sports.  The algorithms were 
designed to be modular, and as such, require merely the change of metric 
calculations to enable application to other sports. 
 
Another method of analysis that we would wish to explore is the relationships 
between the performances of players on the same team.  This has impact not only 
to trade evaluation, but also draft order.  For example, if two players on a team 
generally performed well at the same times, drafting both players, even if one 
would have been ranked lower, may well prove to maximize total expected 
output. 


