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I. Introduction 
  

A. The Data 
 

The data consists of 122 observations of player statistics and salary information for Major 
League Baseball free agents at the end of the 2004 and 2005 season.  Additionally, the 
salary for any given observation is the salary given to the player after they had earned the 
statistics in the observation.  For example, if the statistics in a given observation are from 
the year 2004, the salary is how much the player got paid in the year 2005. 
 

AB R H.1B H.2B H.3B HR RBI SB CS BB BA OBP SLG OPS SALARY P.1B P.2B P.3B P.SS P.C 

379 68 117 17 3 7 38 7 2 31 0.309 0.366 0.425 0.791 $2,050,000 0 0 1 0 0 

464 52 119 19 0 7 59 0 1 51 0.256 0.334 0.343 0.677 $750,000 1 0 0 0 0 

369 69 100 19 3 4 21 36 10 51 0.271 0.371 0.371 0.743 $1,500,000 0 1 0 0 0 

374 49 117 24 3 12 53 1 0 17 0.313 0.348 0.489 0.837 $3,250,000 0 0 0 0 0 

616 100 175 31 11 12 58 46 10 62 0.284 0.348 0.429 0.777 $13,000,000 0 0 0 1 0 

233 30 64 12 1 9 42 4 0 27 0.275 0.348 0.451 0.799 $1,100,000 1 0 0 0 0 

412 49 93 24 3 10 40 7 2 32 0.226 0.294 0.371 0.665 $2,250,000 0 0 0 0 0 

624 117 197 35 6 10 75 18 1 53 0.316 0.366 0.439 0.805 $13,000,000 0 0 0 0 0 

519 69 153 34 3 10 62 0 0 59 0.295 0.369 0.43 0.799 $4,750,000 0 0 1 0 0 

449 57 122 28 1 9 50 0 1 54 0.272 0.355 0.399 0.753 $2,100,000 1 0 0 0 0 

 
Note: From this point, the salary will be in thousands of dollars and the percentage 
values (BA, OBP, SLG, OPS) will be multiplied by 100 to reflect percentages and 
maintain the integrity of polynomial terms. 
 
Finally, since there is a legitimate possibility that some players get paid more based on 
their position, some dummy variables were added to represent a player’s position. 
 
P.1B = 1 if the player is a first baseman, 0 otherwise 
P.2B = 1 if the player is a second baseman, 0 otherwise 
P.3B = 1 if the player is a third baseman, 0 otherwise 
P.SS = 1 if the player is a shortstop, 0 otherwise 
P.C = 1 if the player is a catcher, 0 otherwise 
P.1B = P.2B = P.3B = P.SS = P.C = 0 implies that the player is an outfielder. 
 
In order to prevent a bias as much as possible by selecting certain players, (more popular 
players, players on certain teams, etc) a list of all free agents after 2004 and 2005 was 
created.  From this list, all the hitters were extracted and then ESPN.com data was 
collected for each player’s statistics for the year at the end of which he would become a 
free agent.  After that, the salaries for the exact same players (for the following year) 
were found and “joined” with the corresponding player statistics.  Finally, to check for a 
bias between salaries of different years, an average was taken and luckily, the average 
salaries for free agents for both 2004 and 2005 was very similar (a difference of 0.3%). 
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B. The Objective(s) 
 
The dependent variable that will be used is SALARY.  The major goal here is to 
determine whether statistics from a player’s most recent year has a major affect on their 
salary for the upcoming year.  If this is the case, MLB teams may use this as a model to 
determine how much a player’s true value is.  This can also let MLB teams know if 
current players’ contracts need to be re-worked or if they are being paid their true value.  
In essence, monetary value can be assigned to each unit of a baseball statistic.  If the 
player’s most recent statistics do not truly have an effect on their upcoming year’s salary 
then it would be important to know this, and to find out what factors do affect salary. 
 
Even more specifically, this model can allow teams, managers, and players to see what 
types of skills are rewarded.  The comparison between compensation for hitting for 
power, hitting for average, speed, and defense can be made with this model. 
 
C. Summary 
 
There will be 15 independent variables: 
 
 - AB – at bats    - R – runs scored 
 - H.1B – hits    - H.2B – doubles 
 - H.3B – triples   - HR – home runs 
 - RBI – runs batted in   - SB – stolen bases 
 - CS – caught stealing   - BB – walks 
 - BA – batting average 
 - OBP – on-base percentage 
 - SLG – slugging percentage 
 - OPS – on-base plus slugging percentage 
 - Position (represented by dummy variables P.1B, P.2B, P.3B, P.SS, P.C) 
 
These will be used in an attempt to predict the SALARY, the independent variable, of a 
player for the following year. 

 
 
II. Exploratory Data Analysis 
 
 A. Multicollinearity 
 

In order to possibly eliminate some variables that have high levels of correlation, the 
correlation matrix and the scatterplot matrices for the data can be used.  For the purposes 
of removing some subjectivity from these measurements, a threshold of .85 was selected 
as denoting sufficient multicollinearity for variable removal.  In other words, any 
variables with correlation coefficient > .85 or < -.85 will be considered highly correlated. 
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       AB         R      H.1B      H.2B      H.3B        HR       RBI        BB 
AB   1.0000000 0.8792424 0.9678020 0.8302682 0.3504687 0.5377756 0.7386989 0.6036225 
R    0.8792424 1.0000000 0.8959399 0.7515438 0.4844153 0.6357878 0.7313034 0.7289972 
H.1B 0.9678020 0.8959399 1.0000000 0.8273880 0.3734507 0.5193076 0.7377099 0.5930149 
H.2B 0.8302682 0.7515438 0.8273880 1.0000000 0.2692461 0.4613994 0.6661123 0.5397785 
H.3B 0.3504687 0.4844153 0.3734507 0.2692461 1.0000000 0.1201148 0.2394769 0.3977688 
HR   0.5377756 0.6357878 0.5193076 0.4613994 0.1201148 1.0000000 0.8672076 0.5463511 
RBI  0.7386989 0.7313034 0.7377099 0.6661123 0.2394769 0.8672076 1.0000000 0.5870659 
BB   0.6036225 0.7289972 0.5930149 0.5397785 0.3977688 0.5463511 0.5870659 1.0000000 
 
          H.1B        BA        OBP          SLG         OPS           SB          CS 
H.1B 1.0000000 0.5540542 0.37729702  0.357401022  0.40814017  0.381125584  0.32491821 
BA   0.5540542 1.0000000 0.74165674  0.479626201  0.63446988  0.169071833  0.01683280 
OBP  0.3772970 0.7416567 1.00000000  0.538309206  0.77465868  0.239361423  0.09642614 
SLG  0.3574010 0.4796262 0.53830921  1.000000000  0.94992665 -0.002978809 -0.11344186 
OPS  0.4081402 0.6344699 0.77465868  0.949926654  1.00000000  0.086983986 -0.04894212 
SB   0.3811256 0.1690718 0.23936142 -0.002978809  0.08698399  1.000000000  0.66559295 
CS   0.3249182 0.0168328 0.09642614 -0.113441857 -0.04894212  0.665592954  1.00000000 
 

 
Above, some interesting subsections of the correlation coefficients matrix are presented.  
The underlined coefficients exceed the threshold that has been set for determining a 
correlation sufficient enough to warrant removal of a variable.  As would be suspected, 
many of the variables have some level of correlation with some variables having a very 
high level of correlation. 
 
The HR and RBI correlation is quite high, for obvious reasons.  If a player is hitting a lot 
of homeruns, if players are on base, he is driving in a lot of those runs.  And considering 
when a homerun is hit, it automatically counts as an RBI, there is a built-in correlation 
between the two.  Additionally, there is a high correlation between SLG and OPS, which 
is also a built-in correlation since the OPS quantity is just a sum of OBP and SLG.  The 
reason the correlation between OBP and OPS is less is because OBP is usually 2-3x 
smaller than SLG and varies much less. 
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Finally, AB, R, and H.1B all have very high correlation coefficients and this is not at all 
difficult to believe.  A player with many at bats will also have many hits since they have 
had many more opportunities to have hits than other players.  By the same token, a player 
with many at bats will also score many runs.  Additionally, because most leadoff hitters 
have the most at bat, they also score the most runs because that is their specialty.  As 
shown, AB has a high level of correlation with all the variables, which makes sense since 
more attempts would yield more results, for the most part. 
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B. Resolving Multicollinearity Issues (Somewhat) 
 
For the first set of 3 highly correlated variables, R, AB, and H.1B a regression on each 
individual variable and each combination of the variables was run. 
 

Var Used R^2 Value Reg P-val 
R 0.4201 6.98E-16

AB 0.3136 2.00E-11
H.1B 0.3816 3.49E-14
R+AB 0.4026 7.91E-15

R+H.1B 0.4271 4.05E-15
AB+H.1B 0.4014 4.18E-14

R+AB+H.1B 0.4575 1.27E-15
  
As shown in the table above, as a single variable, R is the most useful as a predictor for 
the independent variable.  Adding H.1B to the model, in addition to R only adds slightly 
to the R2 value of the regression and isn’t really worth the trade-off in model complexity.  
Additionally, there is a debatable difference in the effectiveness of the regression relation 
if R+AB+H.1B is used as opposed to just R.  However, to keep model complexity 
manageable and because the P-value for R itself is smaller, AB and H.1B will be dropped 
from the model. 
 
Next, for HR and RBI the decision is much clearer.  RBI is a better predictor variable 
than HR alone and using both HR and RBI does not in any significant way, increase the 
predictive power of the model.  As such, HR will be dropped from the model. 
 

Var Used R^2 Value Reg P-val 
HR 0.3309 4.22E-12
RBI 0.3941 1.02E-14

HR+RBI 0.3978 7.81E-14
 
Finally, for OPS and SLG, it is shown by the table below that both variables have very 
similar effectiveness in predicting Y.  However, since the combination of both is not 
significantly better than either alone, and since SLG is better alone, OPS will be dropped 
from the model. 
 

Var Used R^2 Value Reg P-val 
OPS 0.3094 2.89E-11
SLG 0.3107 2.59E-11

OPS+SLG 0.3179 1.29E-10
 
Of the original 15 independent variables, AB, H.1B, HR (surprisingly), and OPS have 
been eliminated, still leaving 11.  At first glance, the fact that HR was eliminated may 
seem strange, since everyone knows that big home run hitters are paid very well in major 
league baseball.  But after some thinking, it is easy to convince one’s self that RBI’s 
encompass most of the predictive power of HR’s, and then some.  The elimination of the 
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other variables is also intuitive, since much of the discussion of the reason for their 
correlation is based on common sense of the game of baseball. 
 
Unfortunately, beyond the eliminated variables, many other variables in this data set have 
high levels of correlation with each other.  This is very difficult to deal with, as many do 
not meet the threshold for elimination.  This characteristic of the data will make 
conclusions difficult to make once the regression is completed. 

 
 
III. Model Creation 
 
 A. Order of the Terms 
 

The next step is to examine the plots of each independent variable versus the dependent 
variable to see if the correct polynomial order of the term (for use in the model) can be 
determined. 
 
For R, RBI, and BA, the relationship seems to be relatively parabolic so quadratic terms 
for these variables will be used in the model.  For H.2B, SB, and SLG, there seem to be 
hints of a quadratic relationship, so to be safe, quadratic terms for these variables will be 
used as well.   
 
For the other variables, it is difficult to see any relation beyond a linear one (or to see a 
relation at all), so there will be no quadratic terms for these variables.  This will add 6 
new terms to the full model, R2, RBI2, BA2, H.2B2, SB2, and SLG2. 
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B. Interaction Terms 
 

The next step is to find interactions between the independent variables to see what 
interaction terms should be used in the full model.  Of the 10 choose 2 (50) possible 
interactions here, only 4 of them are significant and many of them are difficult to 
interpret and/or very minor. 
 
The 4 relatively significant interactions will be used in this model, H.2B*RBI, H.2B*BB, 
SB*SLG, and OBP*SLG.  All other very minor interactions are left out to keep the 
model from becoming unwieldy. 
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C. Full Model 
 
After determining dependent variables to use, the polynomial levels of the terms, and the 
interaction terms, the full model is show below. 

 
Y =  BB0 + B1(R) + B2(H.2B)+ B3(H.3B) + B4(RBI) + B5(SB) + B6(CS) + B7(BB) +  
BB8(BA) + B9(OBP) + B10(SLG) + B11(P.1B) + B12(P.2B) + B13(P.3B) + B14(P.SS) + 
B15B (P.C) + B16(R2) + B17(H.2B2) + B18(RBI2) + B19(SB2) +  B20(BA2) + B21(SLG2) + 
BB22(H.2B*RBI) + B23(H.2B*BB) + B24(SB*SLG) + B25(OBP*SLG) + E 

 
 
IV. Assumption Analysis 
 

All the independent variables are plotted against the residuals to confirm that all the 
assumptions that are necessary to run a regression, hold.  All the variables look to have a 
random scatter of points and this shows that the variance of the points is relatively 
constant.  As shown below, the residuals look to have a standard distribution. 
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V. Backward Elimination 
 
 A. The Elimination Process 
 

Backward elimination will be used to find a much simpler model that seeks to maintain 
as much predictive power as possible.  The alpha value used will be a = .10. 
 

Step # R2 Value Adj R2 Reg. p-val
Var 

Removed 
p-val 

Removed 
0 0.6503 0.5592 6.40E-13 None None 
1 0.6503 0.5638 2.29E-13 P.2B 0.9807 
2 0.6503 0.5682 7.96E-14 P.SS 0.9686 
3 0.6502 0.5725 2.71E-14 P.3B 0.9051 
4 0.6501 0.5766 9.07E-15 OBP*SLG 0.8489 
5 0.6491 0.5796 3.30E-15 P.1B 0.5941 
6 0.6480 0.5825 1.19E-15 BA2 0.5763 
7 0.6454 0.5834 5.08E-16 P.C 0.3844 
8 0.6426 0.5841 2.20E-16 SB*SLG 0.3663 
9 0.6384 0.5832 2.20E-16 H.2B*BB 0.2715 
10 0.6330 0.5811 2.20E-16 SB2 0.2167 
11 0.6295 0.5810 2.20E-16 CS 0.3113 
12 0.6256 0.5805 2.20E-16 H.3B 0.2944 
13 0.6214 0.5797 2.20E-16 H.2B2 0.2719 

 
After the elimination process concludes, this leaves ReducedModel1: 

 
Y =  BB0 + B1(R) + B1(H.2B) + B2(RBI) + B3(SB) + B4(BB) + B5(BA) + B6(OBP) + 

BB7(SLG)  + B8(R ) + B2
9(RBI ) + B2

10(SLG ) + B2
11(H.2B*RBI) + E 

 
Call: 
lm(formula = SALARY ~ R + H.2B + RBI + SB + BB + BA + OBP + SLG + 
I(R^2) + I(RBI^2) + I(SLG^2) + H.2B * RBI) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-3456.1 -1105.2  -400.7   747.9  6630.6  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) 10555.8460  7589.4240   1.391  0.16710    
R            -103.8595    48.5169  -2.141  0.03453 *  
H.2B         -152.3628    98.2844  -1.550  0.12399    
RBI            96.5492    45.1173   2.140  0.03459 *  
SB             77.2310    32.1523   2.402  0.01799 *  
BB             58.3822    30.8024   1.895  0.06069 .  
BA            511.6991   188.8497   2.710  0.00783 ** 
OBP          -437.5405   202.6297  -2.159  0.03302 *  
SLG          -502.3347   367.1665  -1.368  0.17408    
I(R^2)          0.8389     0.3610   2.324  0.02199 *  
I(RBI^2)       -1.1045     0.4756  -2.322  0.02207 *  
I(SLG^2)        7.3621     4.1820   1.760  0.08114 .  
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H.2B:RBI        2.6001     1.5339   1.695  0.09292 .  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Residual standard error: 2056 on 109 degrees of freedom 
Multiple R-Squared: 0.6214,     Adjusted R-squared: 0.5797  
F-statistic: 14.91 on 12 and 109 DF,  p-value: < 2.2e-16 

 
All of the model terms have p-values < .1, except SLG and H.2B which are used in 
interaction and polynomial terms.  The R-squared value of .6214 is still quite close to the 
original value of .6503 and more than half of the terms have been removed to make the 
model much more compact, and manageable. 

  
B. A Simpler Model (A Further Reduction) 

 
Here, a continuation of the backward elimination process is done, with a = .08.  This 
allows a further reduced model with a slightly smaller R-squared value, but allows 
interpretation to be much easier and allows stronger conclusions to be drawn. 
 

Step # R2 Value Adj R2 Reg. p-val
Var 

Removed 
p-val 

Removed 
14 0.6114 0.5725 2.2E-16 H.2B*RBI 0.0929 
15 0.6114 0.5764 2.2E-16 H.2B 0.9288 
16 0.6035 0.5716 2.2E-16 SLG^2 0.1362 
17 0.6000 0.5717 2.2E-16 RBI^2 0.3230 
18 0.5947 0.5698 2.2E-16 RBI 0.2222 

   
After the elimination process concludes, this leaves ReducedModel2: 

 
Y =  BB0 + B1(R) + B2(SB) + B3(BB) + B4(BA) + B5(OBP) + B6(SLG)  + B7(R ) + E 2

 
Call: 
lm(formula = SALARY ~ R + SB + BB + BA + OBP + SLG + I(R^2)) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-3751.5 -1160.7  -412.0   799.5  6920.7  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -2504.7325  2470.0363  -1.014 0.312708     
R            -103.9077    41.0100  -2.534 0.012644 *   
SB             60.3053    29.6807   2.032 0.044499 *   
BB             78.6860    26.2170   3.001 0.003303 **  
BA            589.4273   168.1366   3.506 0.000652 *** 
OBP          -550.7921   166.7498  -3.303 0.001278 **  
SLG           179.9167    39.6015   4.543 1.39e-05 *** 
I(R^2)          0.8780     0.3052   2.876 0.004801 **  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Residual standard error: 2080 on 114 degrees of freedom 
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Multiple R-Squared: 0.5947,     Adjusted R-squared: 0.5698  
F-statistic: 23.89 on 7 and 114 DF,  p-value: < 2.2e-16 
 
All of the model terms have p-values < .045.  The R-squared value .5947 is only 9% less 
than the original value of .6503 and beyond ReducedModel1, this model is much easier to 
interpret due to the removal of polynomial and interaction terms. 
 
 
C. Final Assumptions Analysis 
 
For completeness, there must be a check that the residuals of the reduced regression 
models are still under the assumptions that are required.  As shown, the plots below still 
have a relatively random scatter, showing that the assumptions still hold. 
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VI. Conclusions – Based on Subset Analyses 
 

A. Power Hitting 
 

From ReducedModel1 to ReducedModel2, all the eliminated variables (H.2B*RBI, H.2B, 
SLG2, RBI2, and RBI) represent statistics that are highly correlated with a player’s power 
hitting.  As such, the first order of business is checking to see whether ReducedModel2 
appropriately compensates power hitters.  The only term left in ReducedModel2 that has 
a clear relation to power hitters is the SLG term.  This must have a heavy weight in the 
model to appropriately compensate power hitters.  Indeed, the large SLG coefficient 
paired with the smallest p-value on the chart (1.39E095) shows that SLG is indeed very 
important to the regression relation. 

 
Running the regression on SLG alone produces some interesting results.  The R-squared 
value in this regression (shown below) is .3107.  This shows that this regression’s 
effectiveness is approximately 52% of the effectiveness of the entire ReducedModel2.  
Since it was determined earlier that SLG must be used heavily in this model, this finding 
is expected. 

 
Call: 
lm(formula = SALARY ~ SLG) 
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) -8020.37    1564.04  -5.128 1.14e-06 *** 
SLG           267.06      36.31   7.354 2.59e-11 *** 
--- 

 
Residual standard error: 2644 on 120 degrees of freedom 
Multiple R-Squared: 0.3107,     Adjusted R-squared: 0.3049  
F-statistic: 54.08 on 1 and 120 DF,  p-value: 2.59e-11 

 
If the correlation matrix for the model variables is examined, it is seen that SLG has a 
correlation coefficient < .53 with all of the other model variables.  This shows that a 
major part of the model’s power comes from this single variable.  It can be concluded, 
that indeed a player’s slugging percentage is a good predictor for a player’s salary. 

 
             R           SB        BB        BA       OBP 
SLG  0.4799744 -0.002978809 0.4093818 0.4796262 0.5383092 

 
 

Finally, if the correlation matrix between SLG and HR, and RBI is viewed, one can easily 
see that much of the variance captured by HR and RBI is also captured by SLG which 
makes it a little more legitimate that HR and RBI are not included in ReducedModel2.   

 
          SLG        HR       RBI 
SLG 1.0000000 0.8098600 0.6886996 
HR  0.8098600 1.0000000 0.8672076 
RBI 0.6886996 0.8672076 1.0000000 
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B. Hitting for Average 
 

In addition to clearing the bases, driving in runs, and hitting a lot of homeruns, players 
that get on base, have plate discipline, and can put the ball into play are big assets to any 
baseball team.  The main statistics that capture these qualities are BB, BA, and OBP. 

 
Call: 
lm(formula = SALARY ~ BB + OBP + BA) 
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) -3719.12    2592.13  -1.435    0.154     
BB            121.72      16.42   7.413 2.05e-11 *** 
OBP          -612.25     140.75  -4.350 2.91e-05 *** 
BA            852.38     136.77   6.232 7.36e-09 *** 
--- 
 
Residual standard error: 2394 on 118 degrees of freedom 
Multiple R-Squared: 0.4444,     Adjusted R-squared: 0.4303  
F-statistic: 31.46 on 3 and 118 DF,  p-value: 5.127e-15 

 
Combined, these 3 statistics are less than half the terms in the model, yet they account for 
almost 75% of ReducedModel2’s R2 value.  This may seem like a contradiction since 
SLG accounts for 52% of the model’s R2 value, but the high levels of multicollinearity 
ensure that there is much overlap between what these statistics measure. 

 
Seperately BB, OBP, and BA yield R-squared values of .2572, .1385, and .1778 which is 
not entirely unreasonable.  OBP and BA are both percentage measures and do not really 
take into account how many games a player has played.  This may mean that a player 
who has only played a few dozen games will have a good batting average, but that does 
not mean they will earn a significant amount of money.  However, if a player has a large 
number of walks it means that not only do they have plate discipline, but pitchers also 
respect their hitting, and they have had enough at bats to tally up the walks.  This 
explains why walks are a very important factor when determining a player’s plate 
efficiency. 

 
C. Speed 
 
Finally, the last bit of player performance that was hypothesized to affect player salary is 
their speed.  Being much less of a factor than power and batting average (stealing is less 
pervasive and not used as often), it is expected that steals will have a marginal affect on 
salary, but not to a great extent. 

 
Call: 
lm(formula = SALARY ~ SB) 
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
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(Intercept)  2585.77     336.33   7.688 4.56e-12 *** 
SB            129.39      33.65   3.845 0.000194 *** 
--- 
 
Residual standard error: 3005 on 120 degrees of freedom 
Multiple R-Squared: 0.1097,     Adjusted R-squared: 0.1023  
F-statistic: 14.78 on 1 and 120 DF,  p-value: 0.0001943 
 
Here, the result is not exactly what one might want to find (especially a fast baseball 
player.)  Stolen bases are (apparently) a relatively poor indicator for a player’s salary.  
This might lead one to believe that steals are not at all important in determining a player’s 
salary.  This would be an incorrect assessment.  The majority of major league baseball 
players are paid based on the other two categories (Power and Average) as opposed to 
speed.  As such, this model does not have many players who are speed players and paid 
for their speed.  This leads to the conclusion that it may be better to create two separate 
equations, for speed players and for the rest of MLB players. 

 
To attempt to get a better feel for how fast players are compensated (or 
undercompensated, as it has been shown so far), a regression with SB, R, and R2 will be 
done.  This is because fast players, on average will score more runs than slower players.  
For example, if a slow player is on 2nd base, a base hit will most likely not score him, but 
a fast player will score, in all likelihood.  This will be done with the caveat that not all of 
the effect of R and R2 is based on the player’s speed.  Much of it has to do with the team 
the player plays for (do they score a lot of runs?), the number of games the player has 
played, and other factors (homeruns and big hits score runs too). 
 
Call: 
lm(formula = SALARY ~ SB + R + I(R^2)) 
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 2789.5034  1298.6514   2.148 0.033758 *   
SB            -4.3147    30.1504  -0.143 0.886449     
R            -69.3384    44.0524  -1.574 0.118166     
I(R^2)         1.1883     0.3326   3.572 0.000513 *** 
--- 
 
Residual standard error: 2323 on 118 degrees of freedom 
Multiple R-Squared: 0.4768,     Adjusted R-squared: 0.4635  
F-statistic: 35.84 on 3 and 118 DF,  p-value: < 2.2e-16 
 
The huge jump in the R2 value for this regression shows how important R and R2 are as 
predictor variables in this model.  In fact, if a regression is run with R and R2 alone, the 
R2 value turns out to be .4767, a .0001 difference from the SB, R, R2 regression.  This 
shows that almost all of the variance explained by SB is also explained by R.  So why is 
SB still in the model?  As shown earlier, the p-value of SB was .044499, not a relatively 
low value, but definitely under the determined threshold of elimination. 
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VII. Overall Conclusions 
 

In this study, it is clear that a player’s statistics do provide at least some sort of predictive 
power when it comes to predicting salary for an upcoming year.  This is evidenced by the 
decent R-squared values in ReducedModel1 (0.6214) and ReducedModel2 (.5947).  
Additionally, both models have minuscule p-values, approaching 0.  The majority of the 
mathematical analysis will be done on ReducedModel2, since the interpretation 
difficulties due to interaction terms and multicollinearity are beyond the scope of this 
project. 

 
A. ReducedModel1 
 
With this model, it is very difficult to interpret many of the terms in the model since they 
are affected by interactions and polynomial terms as well.  The linear terms in this model 
that do not have interaction terms or higher order terms are SB, BB, BA, and OBP.  
Unfortunately, due to the high multicollinearity between the variables at the onset, even 
the conclusions to be made about these variables will be imprecise. 
 
Roughly speaking, this model predicts that for every base that a baseball player steals, if 
he is receiving a new contract the following year, he will receive $77,230 on his salary.  
For every walk that he is issued, he will receive $58,382 and every batting average point 
earns him $51,196.  The OBP variable has a negative coefficient not because a lower 
OBP is better, but instead because OBP has a high correlation with other variables and as 
a whole, the its coefficient along with the others give a better estimate of how a player’s 
salary will be affected. 
 
The efficiency and correctness of this model can be viewed through a practical lens as 
well.  Baseball experts know that the major parts of a player’s game include their 
defense, ability to hit for average, ability to hit for power, and their speed.  The model 
below includes aspects of all of these factors (except defense, which is difficult to capture 
statistically).  In terms of ability to hit for average, BB, BA, OBP, and SLG, and SLG2 all 
take into account a hitter’s plate discipline and propensity to swing at bad pitches, and 
their ability to put the ball into play.  With respect to power, H.2B, SLG, RBI, and RBI2 
all represent the player’s ability to put the ball into the outfield, the ability to drive in 
runs, and the ability to help clear the bases.  Finally, with respect to speed, SB, R, and R2 
do a good job of showing how fast a player is, both with and without respect to their 
ability to get on base.  Simply speaking, the appearance of each of these terms is not 
surprising and easily explainable.  The exact interpretation of each of the coefficients 
requires much more analysis. 
 
Taking an example from this past year, Reggie Sanders: 
 
R = 49, H.2B = 14, RBI = 54, SB = 14, BB = 28, BA = 27.1, OBP = 34.0, SLG = 54.6 
R2 = 2401, RBI2 = 2916, SLG2 = 2981.16, H.2B*RBI = 756 
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Plugging this into the regression model,  
 
Y = 10555.8460 + -103.8595(49) + -152.3628(14) + 96.5492(54) + 77.231(14) + 
58.3822(28) + 511.6991(27.1) + -437.5405(34.0) + -502.3347(54.6)  + 0.8389(2401) + -
1.1045(2916) + 7.3621(2981.16) + 2.6001 (756) 
 
Y = 5533.188 => $5,533,188 is Reggie Sanders predicted salary.  His actual salary is 
$5,000,000. 
 
 
B. ReducedModel2 
 
The following table shows what percentage of ReducedModel2’s R2 value is explained 
by the individual regression terms. 
 

Variable R2 Value % 
R 0.4201 70.64 

SB 0.1097 18.45 
BB 0.2572 43.25 
BA 0.1778 29.90 

OBP 0.1385 23.29 
SLG 0.3107 52.24 

R+R^2 0.4767 80.16 
 

Due to the high levels of multicollinearity, these percentages do not add up to 100%.  
This shows that in general R and SLG offer very good predictive power in determining a 
player’s salary for an upcoming year.  As explained above, SLG is an excellent indicator 
of power and an above average indicator of average.  R is an average indicator of speed 
and average indicator of average.  Together, these two statistics do indeed cover a lot of 
the bases, so to speak. 
 
Call: 
lm(formula = SALARY ~ R + I(R^2) + SLG) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-4426.4 -1363.3  -395.1   817.6  7193.3  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -2654.8679  1788.6284  -1.484 0.140395     
R             -71.0657    41.1153  -1.728 0.086524 .   
I(R^2)          1.0539     0.3117   3.381 0.000979 *** 
SLG           141.5917    34.1570   4.145 6.42e-05 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Residual standard error: 2170 on 118 degrees of freedom 
Multiple R-Squared: 0.5432,     Adjusted R-squared: 0.5316  
F-statistic: 46.77 on 3 and 118 DF,  p-value: < 2.2e-16 
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As expected, this combined regression shows a fantastic model.  This is a model with 
only R, R2, and SLG explains 91.3% of the variance explained by the entirety of 
ReducedModel2 and has less than half as many terms. 
 
 
C. Final Thoughts 
 
This study has uncovered a multitude of information.  The study has shown (as expected) 
that there is a definite relation between a player’s statistical performance and the salary 
that they receive.  This is shown by multiple regressions with relatively good R-squared 
values.  Additionally, specific statistics were found to be of particular importance in 
terms of predicting salary, namely Slugging Percentage (SLG), Walks (BB), and Runs 
Scored (R). 
 
Another important “conclusion” that can be drawn is that from the beginning, it was 
apparent that many baseball statistics had a high level of correlation.  All the statistics 
that were expected to be correlated (RBI and HR, etc) were and statistics that one might 
not expect to be correlated, were correlated as well.  A major reason for this is the fact 
that as a player has more at bats, other statistics are bound to increase.  Even if a player is 
terrible at driving in runs, given enough at bats, he will have a high RBI count.  This 
accounts for a large portion of the correlation between seemingly uncorrelated statistics.  
This high level of multicollinearity, as explained in section VII.A, makes it very difficult 
to draw strong conclusions based on the coefficients of the final regression model. 
 
Another piece of information that may be quite relevant is a surprising conclusion.  At the 
onset of the study, dummy variables representing a player’s position were added to the 
data because it was a possibility that a player’s position would affect his salary.  
Surprisingly, early in the elimination phase, all the player dummy variables were 
eliminated.  This indicates that a player’s position is not very important in determining 
his salary.  The only possibly significant exception is for catchers.  The P.C variable was 
not eliminated until the 7th step of the elimination process.  This indicates that there may 
be some modifier on a catcher’s salary with respect to player’s of other positions. 
 
Finally, it should be noted that through this study, it was found that it may be prudent to 
have 2 separate models for players that can be classified as “speed” players and others 
that can be classified as “power” players.  This is because some players are paid for their 
speed and others are paid for their power.  When a player has average speed and average 
power, the effect on their salary is not necessarily additive.  This is a pronounced 
difference since in ReducedModel2 and ReducedModel1, there is relatively little weight 
given to Stolen Bases.  The reason this does not indicate that speed is not important is 
because in some of the observations, players with very little power and a lot of speed had 
their salary predicted quite incorrectly based on the model.  The fact that the majority of 
the players were power players may have influenced the model to make it better suited to 
predict the salaries of power players. 
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