
Raaid Ahmad October 1, 2004
Storage Systems 600.419 Project #1

I. Reading Questions:

A) Both system implementers and system researchers value knowledge of low-level
performance characteristics of disk drives. This information can help implementers
determine what system policies to use and exclude from file systems. Performance
characteristics and drive information can also be used by system researchers to allow more
efficient research and data extraction from systems being researched. Obtaining this
information accurately and in a timely manner is difficult because manufacturer
specifications are often incorrect, not up to date, or available.

Three micro-benchmarks, Skippy, Zoned, and Seeker are used to solve this problem of
disk information extraction. Each of these three benchmarks extracts different pieces of data
about the hardware being tested. The important aspects of the proposed solutions are the
broad goals for micro-benchmarks. Benchmarks should be general, complete, accurate, and
fast. The combination of the three micro-benchmarks allows all four conditions to be met.

B) The authors’ solutions are excellent. This paper contributes many critical intuitions
to the storage systems area. For example, many previous benchmarks had tried to overcome
rotational latency to obtain accurate benchmarks. Due to the random nature of rotational
latency, these benchmarks did not perform well. SKIPPY is the first benchmark that actually
exploits rotational latency to extract more information.
 In addition to the SKIPPY algorithm, the paper also contributes a general standard for
good micro-benchmarks. The paper claims that ideal benchmarks should be general,
complete, accurate and fast. An explanation for each of these warrants is given and sets a
standard for future benchmarks.

C) I think this experiment was a good opportunity to explore different benchmarking
algorithms but I do think too much was left to interpretation by the experimenter. There is so
much data and so many different results to interpret that the multiple variables in each and
every experiment make it difficult to understand the details.
 I think clarity of the experiment can be improved if for some of the algorithms,
expected results are given. If some expected results are given, it allows the experiment to
know whether or not they are on the right track. Another benefit of expected results is that
understanding the expected results can easily help convey concepts. If no expected results
are given at all, experimenters may start out by making incorrect assumptions and may
confuse themselves by getting off on the wrong foot.

Raaid Ahmad October 1, 2004
Storage Systems 600.419 Project #1

II. System Questions:

A) False. The lseek() system call does not actually cause a disk drive to seek. The
lseek() system call is a way to manipulate a pointer to a specific place on the disk. When the
lseek() function is called, the disk doesn’t actually do anything, the offset point for the
associated device is changed. Seeks are actually performed as a part of the read and write
system calls. When a read or write call is executed, the disk seeks to the pointer (set by
lseek()) and then performs the specified operation.

This fact was discovered during the programming of the HOPPY algorithm. During testing,
the algorithm was as follows:

ds_lseek(/* seek to 0 */);
 // Begin Time
 ds_lseek(/*seek nth sector */);
 ds_write(/*write to current sector*/);
 // End Time

This algorithm for HOPPY yielded a uniform write time equivalent to the rotational latency
of the disk. This meant that the disk arm was never actually moved back to 0, but instead
was kept at the last sector written to. The solution to the problem is denoted below:

ds_lseek(/* seek to 0 */);
ds_write(/*write to sector 0*/); // Perform Write to Reposition Head @ 0

 // Begin Time
 ds_lseek(/*seek nth sector */);
 ds_write(/*write to current sector*/);
 // End Time

B) The read() calls should exhibit the same behavior as the write() calls. The only
difference is that since reads may take a shorter period of time since no data is being written
to the disk. As such, one would expect the read() call to be approximately the same shape as
the regular SKIPPY algorithm graph, with a smaller magnitude.

Raaid Ahmad October 1, 2004
Storage Systems 600.419 Project #1

III. Programming Questions:

A) SKIPPY

Figure 1

The graph obtained from the DiskSim (Figure 1) simulation is very similar to the
graph in section 5, figure 14. The only differences are periodic measurements that read far
above or below their expected value. These values may represent slipping or remapping on
the disk. The fluctuations seem to be periodic and at a fixed ratio, which would make
remapping an unlikely cause of the aberrations. Instead, the behavior exhibited by the graph
can be explained by what happens when sectors are “slipped.” When a hard drive has a bad
sector, the next physical sector is used to represent the space of the previous sector on the
logical sector map. In terms of the graphical interpretation, this means that when a sector is
being written to by the SKIPPY algorithm, and it is a bad sector, the algorithm attempts to
write the sector, fails and then attempts to write the next sector, before succeeding. This
slipping is what might cause the large spikes in the graph.

Raaid Ahmad October 1, 2004
Storage Systems 600.419 Project #1

The rotational latency of this drive is approximately 8.33 ms. This number is
derived from the graph very easily. At the beginning of the skippy algorithm, the offset is
very small, which means that consecutive writes incur nearly full rotational latency since the
platter must spin an entire time before it can write to consecutive (or extremely close)
sectors. For this reason, the first few values recorded by the skippy algorithm represent the
rotational latency. From the rotational latency, the speed of rotation can easily be
determined. If the platter spins once in 8.33 milliseconds, it revolves approximately 7202
times in 1 minute. As such, it can be concluded that the hard drive being tested spins at
approximately 7200 RPM.

Additional analysis of the graph reveals the head switch time to be
approximately 1.66ms (Figure 2). This can be taken by taking the difference between the
normal time returned and a small jump followed by a return to approximately the same value
before the jump. Head switches represent the time taken to switch from one recording
surface to another. This head switch time does not, however, include a cylinder switch.
Table 1 shows a head switch from sector 481 to 482.

Distance (Sector Offset) Time (ms)
481

2.688000

482

4.346000

483 2.689000

 Table 1

 After a few head switches, a larger jump can be identified on the graphs. These larger
jumps represent cylinder switches in the hard drive. A cylinder switch includes a head
switch. On this particular hard drive, there are 4 peaks representing head switches, in
between cylinder switch peaks. This denotes that there are 5 heads on this hard drive
because the final cylinder switch after the 4 head switches is a cylinder switch (that
encompasses a head switch.) A cylinder switch time is measured in the same way as a head
switch. The approximate cylinder switch time for the hard drive being tested is 2.3ms
(Table 2).

Distance
(Sector Offset)

Time (ms) Distance
(Sector Offset)

Time (ms)

434 2.419 445 2.509
435 2.419 446 2.509
436 4.794 (C) 447 (H) 4.166
437 2.42 448 2.509
438 2.464 449 2.509
439 2.464 450 (H) 4.167
440 4.122 (H) 451 2.509
441 2.464 452 2.554
442 2.464 453 (C) 4.838
443 4.167 (H) 454 2.554
444 2.464 455 2.554

Table 2
* - (C) denotes Cylinder switch and (H) denotes a head switch.

Raaid Ahmad October 1, 2004
Storage Systems 600.419 Project #1

Figure 2

The final metric of the hard drive that can be determine from examining the SKIPPY
algorithm data is the minimum time to media plus transfer time. This calculation measures
the fastest possible time the hard drive can seek a sector and write to it. The minimum time
to media plus transfer time for this hard drive is approximately 2.1ms.

Raaid Ahmad October 1, 2004
Storage Systems 600.419 Project #1

2) HOPPY

Head switches and Cylinder switches are not readily apparent in the HOPPY
algorithm graph. Unfortunately, HOPPY covers far fewer sectors than SKIPPY does. Over
2000 iterations, SKIPPY covers approximately 2 million sectors while in the same number of
iterations, HOPPY only covers 2000 sectors. As such, HOPPY is iterated through 40,000
times to show head and cylinder switches.

Figure 3

Figure 3 shows labeled head switches and cylinder switches that are inconsistent with
the conclusions drawn in SKIPPY. The figure shows 5 head switch peaks between cylinder
switches, which is inconsistent with SKIPPY conclusions. The reason for this is that HOPPY
incurs variable rotational latency and it makes head switch and cylinder switch delineations
somewhat difficult.

However, track groups can be vaguely identified. Figure 3 shows 3 different track

groups that are differentiated by different time values. The first track group has a lower set
of time values than the 2nd and 3rd track groups. Given a traversal of more sectors, more
track groups can be found but creating output files for these take exorbitant amounts of time.

Raaid Ahmad October 1, 2004
Storage Systems 600.419 Project #1

3) PLOPPY

Figure 4

The PLOPPY algorithm allows very easy identification of head switches, cylinder
switches and rotational latency, as shown in Figure 4. The reason this algorithm is much
more effective than HOPPY in identifying these disk geometries is the starting point.
HOPPY uses a 0 based system that always seeks sectors starting from 0. PLOPPY, on the
other hand, seeks from the previously written sector. This allows a clean delineation in
seek/write times between adjacent sectors on the same track/cylinders and adjacent sectors on
different tracks/cylinders.

Since consecutive sectors are being written, the rotational latency remains largely the

same. In addition to being relatively constant, the rotational latency is very high since each
and every write incurs almost full rotational latency. Specific calculations can be made for
both head switches and cylinder switches. The points identified on the graph can be
subtracted from the constant rotational latency (~8.33 ms) to obtain the head switch time
(~1.66ms) and cylinder switch time (~2.3ms).

Raaid Ahmad October 1, 2004
Storage Systems 600.419 Project #1

4) SLOPPY

Figure 5

The results for this algorithm were quite unexpected. The results are not at all similar
to the original write-based SKIPPY. The graph is composed a series of nearly instant (1.15
ms) reads followed by a long read. As the algorithm progresses, the density of the 1.15ms
reads decrease drastically. At the end of the disk, all 1.15ms reads are gone and the entire
array of reads is ~20 ms.

 The general trend is an increase in time of seeks and writes, as the algorithm gets
closer and closer to the center of the hard disk. Track zones are vaguely viewable and can be
identified by sharp increases and decreases in time.

 It was difficult to find any specific trends in this graph. However, after about sitting
here for 6 hours staring at graphs and tables, a slight correlation was noted. Every time there
is cylinder and head switch on SKIPPY, within three or so sectors, there is also a spike in the
read time on the SLOPPY graph. The significance of this correlation is not totally known,
but this does indicate that read times do jump in the vicinity of head or cylinder switches.

