

Table of Contents

I. Introduction 1

II. Agent Attributes 2

III. Unit Types 6
 A. Infantry 6
 B. Sniper 7
 C. Mortar 8
 D. Tank 9

IV. Decision-making Algorithms 10
 A. Vision Algorithm 10
 B. Attacking vs. Moving 11
 C. Movement Algorithm 12
 D. Attack Algorithm 13
 i. Infantry 13
 ii. Mortar 14
 iii. Sniper 14
 iv. Tank 15

V. Maps and Positioning 16

A. The Map 16
B. Initial Positioning 16
C. The “Spread” Value 18

VI. Statistical Analysis Tracker 19

VII. Unit Distribution Analysis 20
 A. Homogenous Distributions 20
 i. Infantry 20
 ii. Sniper 22
 iii. Mortar 24
 iv. Tank 26
 B. Selected Heterogeneous Distributions 28
 i. 40 Snipers vs. 35 Mortars/35 Infantry 28
 ii. 50 Infantry/20 tanks vs. 45 Mortars/10 Snipers 30
 iii. 20 Mortars/20 Tanks vs. 100 Infantry 31
 iv. 50 Infantry/10 Snipers vs. 40 Infantry/20 Mortars 32

VIII. Vision Variable Analysis 33
 A. Infantry 34
 B. Mortar 35
 C. Sniper 36
 D. Tank 37

IX. Spread Analysis 38
 A. Infantry 39
 B. Mortar 40
 C. Sniper 41

D. Tank 42

X. EINSTein Simulation Correlations 43

XI. Conclusion 45

XII. Simulation Execution Instructions 46

I. Introduction

 The simulation discussed in this paper is one created from scratch, using a customized

engine that simulates a battle between two armies on a battlefield. The purpose of the

simulation, named sWARm, is to determine how armies behave given various attributes and

battle variables. This paper examines the effects of army composition, vision, and initial army

distribution on the outcomes of the battle simulations.

In sWARm, each battle is composed of two armies, with each army containing various

units with specific attributes. Due to the random nature of the war, two battles with the exact

same starting parameters can result in a different result each time, since many decisions that are

made are random. Over many successive runs however, aggregate values which are more useful

for analysis can be determined. A single run of sWARm, while entertaining to watch, is not

indicative of a successful army composition. As such, sWARm is meant to be run in a batch

mode, where aggregate results are calculated over 1,000 runs of the same initial battle

conditions. The sWARM simulation in non-graphic batch mode (for multiple runs and

calculations), command-line simple graphics mode, or full GUI interface graphical mode.

 1

II. Agent Attributes

The agents in a sWARm simulation are called units. In order to make the agents in the

sWARm simulation behave as realistically as possible, it is important to take into account the

variable statistics most relevant to a battle that would influence a unit’s behavior. The following

is a brief description of each unit attribute.

Hit Points – This attribute denotes the health of a unit. The real equivalents of hit points

are life, health, and wellness of a soldier or vehicle. When damage is dealt to a unit, the

damage is subtracted from its remaining hit points. If at any time a unit’s hit points reach

0, the unit is deemed dead. Hit points do not regenerate and once hit points are lost, there

is no way to regain them. For infantry units, this attribute is normally distributed with a

small standard deviation. For mechanical units, this attribute is constant.

Armor Coverage – This attribute denotes the probability that a unit’s armor will mitigate

the damage dealt to it. The real equivalent of armor coverage is the percentage of the

body of a unit or vehicle that is covered by armor, so that a fired shot has a chance of

hitting armor or the bare skin of a body or an exposed part of a vehicle. If armor

coverage is denoted by a probability p, the probability that damage dealt to a unit is

mitigated, is p and the probability that a unit will incur the full damage from the attack is

1 – p. This probability p is set higher for units with sturdy armor and protection and

lower for units that do not rely on close combat. For mechanical units, this attribute is

relatively high for armored vehicles and low for non-armored vehicles.

 2

Armor Effectiveness – This attribute denotes the percent of the total damage dealt, that

the unit will incur if the armor mitigates the hit. The real world equivalent of this armor

effectiveness is the thickness or toughness of the armor possessed by a unit or vehicle. If

armor effectiveness is denoted by a probability p and damage dealt is denoted d, the

amount of damage incurred by the unit is (1-p)*d and amount of damage prevented is

p*d. This probability p is set higher for units with thicker armor, and lower for units that

do not specialize in close-quarters combat. For mechanical units, this attribute is high for

armored units and low for non-armored units.

Vision – This attribute is a quantifier for how far a unit can see in any direction, with

modifiers when it is looking up a hill or down a trench. The real world equivalent of

vision is the vision of a soldier or the aiming mechanism for a tank. This attribute is very

high for snipers and units with technological aiming techniques and low for regular

human units.

Splash Damage Factor – This attribute defines the percentage of normal attack damage

that will be dealt to any adjacent units to the unit being targeted. This can be thought of

as shrapnel, or an explosion that spreads to a large area. If the splash damage factor is

denoted as p, and the damage it regularly deals is denoted d, the damage dealt to each

unit in a space adjacent to the attacked space is p*d. Units that fire guns do not have this

capability, but units that fire grenades, explosives, or shrapnel have the ability to harm

units outside their immediate attack space.

 3

Base Damage – This attribute is the average amount of damage a unit does per attack.

This can be thought of as the amount of damage a gunshot, grenade, or explosive shell

does to an enemy in a battle. Along with distance and armor modifiers, this attribute

determines how much damage will be done to an enemy in a given round of the

simulation.

Damage Standard Deviation – This is the standard deviation of the amount of damage a

unit does per attack. Not every attack can do damage equal to the base damage since that

would be unrealistic. This can be thought of as imprecise hits, excellent hits, or

modifications of a normal hit in battle. For attacks like gunshots, the standard deviation

is relatively small, since the range of damage a gunshot does is not extremely high.

However, for explosives and shrapnel, the standard deviation is much greater since these

types of attack are inherently more random and volatile by nature.

Maximum Actions Per Turn – This is the maximum number of moves and/or attacks per

turn. T his attribute is analogous to a vehicle or soldier’s speed in battle. Infantry are fast

units and can achieve more decisions per turn, while tanks and snipers are slower and

more calculating, which means their decisions are slower, and the maximum number of

decisions that they can make per turn is much lower.

Probability of Multiple Actions Per Turn – The probability of a unit being able to have

“another decision” in a single turn. Each unit will be allowed one decision per turn and

each successive decision must meet this probability threshold in order for the unit to be

 4

allowed to make the extra decision. If a unit has a multiple action probability p, it will

make a decision and it’s probability of making a second move will be p, and each

successive probability will be reduced by a factor of p. For example, the fourth turn will

only have a p^3 probability of occurring. This compounding is done until the maximum

actions per turn threshold is reached, at which time a unit is not allowed any more

decisions for the turn.

Accuracy – This attribute denotes the probability that an attack will hit another unit. The

real equivalent of accuracy is accuracy of guns and precision of the weapons of a soldier

or vehicle. If a unit’s accuracy is denoted by p, the probability that an enemy unit will be

hit by the unit’s attack is p^d, where d is the distance between the two units.

Speed – This attributes determines which units act first in a turn and is used for

determining the maximum number of decisions per turn.

Maximum Slope Traversable – The maximum height a unit can travel in one move. This

equates to a unit on foot having more mobility than a treaded vehicle.

 5

III. Unit Types

 sWARm armies currently consist of up to 200 units comprised of up to four main unit

types, each with different characteristics and behavior patterns. The unit types are infantry,

sniper, tank, and mortar. The specifics of the units will be described below.

 A. Infantry

“These units are the lifeblood of an army. They are fast and well armored for

their size. While an infantryman’s accuracy and damage may not be overly impressive,

his speed compensates for this deficiency. An infantry unit is usually able to make

several movements or attacks per turn, and thus is usually the first to arrive at a battle,

and creates a formidable fighting force when combined with several other infantrymen.”

Hit Points Normally Distributed (µ =15, σ = 2)
Armor Coverage 70%
Armor Effectiveness 20%
Vision 50%
Splash Damage Factor 0
Base Damage 7
Damage Standard Deviation 2
Maximum Actions/Turn 5
Probability of Multiple Actions/Turn 75%
Accuracy 75%
Speed 20
Maximum Slope Ascent/Descent 3

Infantry Attribute Table

 6

 B. Sniper

“Snipers are painfully precise, and very deadly. An opponent caught off guard by

a cadre of snipers will certainly regret his lack of foresight, as they will pick off

infantrymen from a distance with little difficulty. A sniper’s weakness lies in his speed

and close combat skills. He is usually only able to make one to two attacks or movements

per turn, and thus a battle can be lost or won before snipers are able to come to their

army’s aid. Additionally, low armor levels for snipers make them easy targets in close-

combat.”

Hit Points Normally Distributed (µ =13, σ = 1)
Armor Coverage 55%
Armor Effectiveness 10%
Vision 100%
Splash Damage Factor 0
Base Damage 20
Damage Standard Deviation 1
Maximum Actions/Turn 2
Probability of Multiple Actions/Turn 50%
Accuracy 95%
Speed 5
Maximum Slope Ascent/Descent 3

Sniper Attribute Table

 7

 C. Mortar

“These units certainly provide plenty of “bang” for your buck. They move

significantly faster than tanks, and offer immense amounts of damage to a designated

target along with splash damage to the area surrounding a target. With the approximate

strength of an infantryman, a mortar-man is versatile, and several of them can often take

an opponent by surprise with devastating consequences. Unfortunately, their low hit

points make them vulnerable to enemy tanks and snipers.”

Hit Points Normally Distributed (µ =15, σ = 2)
Armor Coverage 50%
Armor Effectiveness 20%
Vision 65%
Splash Damage Factor 10%
Base Damage 20
Damage Standard Deviation 3
Maximum Actions/Turn 3
Probability of Multiple Actions/Turn 55%
Accuracy 55%
Speed 10
Maximum Slope Ascent/Descent 2

Mortar Attribute Table

 8

 D. Tank

“A tank is the workhorse of an army. This unit will usually outlast most others for

two reasons: it possesses an incredible number of hit points, and it will be the last to

reach the battle. The tank’s lack of speed is balanced by its range and destructive

firepower. One shot from a tank will not only shatter its target, but will severely cripple

all units in the surrounding area. Although tanks may not get to take as many shots as

other units, the ones they do take count for quite a bit.”

Hit Points 60
Armor Coverage 90%
Armor Effectiveness 40%
Vision 80%
Splash Damage Factor 20%
Base Damage 20
Damage Standard Deviation 6
Maximum Actions/Turn 1
Probability of Multiple Actions/Turn 0%
Accuracy 65%
Speed 1
Maximum Slope Ascent/Descent 1

Tank Attribute Table

 9

IV. Decision-making Algorithms

 One of the most important steps in creating the simulation is determining how an

individual unit will establish what decisions it needs to make, and the steps required for making

the decisions. The sWARm simulation uses a multi-layered decision-making process which

makes an agent determine first whether it will attack or move. If an agent decides to attack, the

attack algorithm will be invokes, and if it moves, the move algorithm will be invoked. Each of

these algorithms is specific to each unit type to closely mimic their predicted behavior in a battle.

One of the critical factors used in making a decision is the vision of the agent as the number

enemy and friendly agents it sees will ultimately determine what action it takes.

A. Vision Algorithm

An integral part of an agent’s decision and movement process is its vision. This

aspect of the simulation works quite unlike similar features of other models and

frameworks. Models such as Schelling’s model take only adjacent or once removed

spaces into account when determining the visible points. The algorithm for the sWARm

simulation is based on the altitude of terrain surrounding any point in question.

To calculate the overall visible range from a point, the maximum vision in each of

the cardinal directions is obtained. This is done by iterating in each direction until a

boundary is reached, a maximum height differential is met, or the maximum vision is

reached. It should also be mentioned that a unit on one side of a hill cannot see a unit on

the other side, which makes the simulation more realistic. The number of iterations

before one of these conditions is met is recorded as the maximum vision for that cardinal

direction from that point. After these numbers are recorded they are combined by

concatenating the area of the polygon formed by them and the area achieved by using the

 10

Java API’s quadTo() function. This gives the effect of offering a rounded area of visible

points that matched what would realistically be visible in similar terrain conditions. In

total, there is a list of visible points created for each army, for each unit type, and for each

point on the map. While at first this may seem excessive and wasteful, it is done to

minimize the amount of in-simulation calculations required per turn.

Each unit type has a vision modifier, that acts as a handicap on the vision in each

of the cardinal directions before the polygon and quadTo() calculations. This limits the

vision of certain unit types, having a profound effect on the outcome of the simulation.

During the analysis of data produced by the simulation, it was discovered that an agent’s

vision is one of the most critical factors in determining number of kills as well as

probability of living through the battle. This can be most profoundly seen when taking

the example of a sniper vs. an infantry unit. While the infantry can move or attack up to

five times per turn, they hardly ever come within close enough range to provide

competition to a pack of snipers. The enhanced vision range of the sniper allows it to

keep other units at a safe distance, a key factor for its survival due to its slower

movement.

B. Attacking vs. Moving

The first consideration in creating a decision structure was to create a way for a

unit to determine whether it should attack or move. To that end, several lists of possible

things to consider when making this decision were created. One factor that seemed

consistently and realistically important in a battle situation was the ratio of friends to

enemies in a unit’s vision. In other words, if a unit can see one enemy and five friends, it

probably means that the unit is too far from the battle to be effective. Therefore, it should

 11

move. By the same token, if a unit can see several enemies, but no friends, it should

move due to a high probability of hostile fire without “backup”. If the ratio of enemies to

friends is even, or within a reasonable range of even, a unit will decide to attack because

it is both close to the battle (presumably) and has sufficient fire support. This way, a unit

will only attack if it has a reasonable chance of victory, survival, and making a

contribution to the main battle rather than getting tied up in small skirmishes. In this

way, the unit is still thinking for itself, while still contributing to an overall army strategy.

To execute this decision strategy, a unit returns an ArrayList of points that are

within its vision. Each point found is then examined on the map to determine whether it

is occupied, and if so, whether it is occupied by a friend or enemy unit. The number of

enemies and friends is totaled, and a ratio is calculated. If the unit has a reasonable

enemy to friend ratio, it will attack. Otherwise it will choose to move.

C. Movement Algorithm

Once a method for determining whether a unit ought to move or attack was

created, the next decision a unit needs to make is to determine where it will move to.

Since the agents in the simulation have two major priorities, staying alive and killing

other units, it is easy to determine that a unit should try to move to a space that brings its

visible enemy to friend ratio closest to 1:1. Thus, first the valid moves a unit could make

(determining which of its neighboring spaces wasn’t occupied or out of bounds) is

determined. The visible friend to enemy ratio from every point that a given unit can

feasibly move to is determined. A unit would thus move to the space with the best ratio

(closest to 1:1).

 12

It seems logical that if a unit finds two spaces to offer it the same enemy to friend

ratio, that it would try to move to the space that increased its vision more. This can either

be accomplished by moving further from the border of the map, or more often, by

moving to a space of greater height. The space to move to was determined by generating

the total potential number of points visible for each space in question and then moving to

the space with the largest number of visible points.

In order for the units to move into the range of the enemy army, an initial bias is

needed. This bias is based on a Bernoulli random variable that is generated at the runtime

of each move. By this bias, a unit would try to move toward the enemy army location if

it did not have any enemies in sight. We rationalized the unit’s knowledge of its enemy’s

location with the idea that in a real battle, any army engaging in battle would have some

idea where to go in order to engage its enemy. Once this was added to the movement

algorithm, the armies appeared to move toward each other as expected.

D. Attack Algorithm

The way one unit type attacks is quite different from the way another unit type

attacks. Each unit type has a distinct attack algorithm. The attack algorithms are

described in detail in this section.

i. Infantry

An infantry unit’s main objective is to weaken the enemy’s front line. In

order to do this, all infantry units will always go for the quickest kill. This is

determined by calculating the potential target’s estimated hit points. The

estimated hit points is a value equal to that unit’s current hit points minus the

estimated damage that the attacking unit can deal. This test is performed on all of

 13

the enemy units that fall within the infantry’s attack range, and the unit with the

lowest estimated hit points that is below 0 will be attacked.

If there is no enemy unit within range that is estimated to be killable in

one shot, the infantry will attack the most “dangerous” unit within range. A unit’s

threat level is computed by multiplying its hit points, accuracy, and the average

damage dealt per attack, all divided by the current distance from the attacking

unit.

ii. Mortar

The mortar is a specialized unit meant for decimating slower, more

heavily armored units (such as the tank), and as such, its first attack priority is to

scan its attack range for the unit with the highest armor cover times armor

effectiveness. If there is a tie, it will attack the most dangerous unit within its

vision range.

iii. Sniper

Similar to the infantry unit, a sniper will compute the estimated hit points

for all enemy units within its expansive attack range. Of all the units for which

this value is less than zero, the sniper will attack the unit with the highest hit

points that it still believes it can kill in one shot. This is equivalent to the sniper

attempting “headshots” at the most powerful enemy units.

If there is no unit that is killable in one shot, a sniper will check to see if

there are any units within a range of 3 tiles. If there are units within 3 tiles, the

sniper will attack the most dangerous unit, as computed above. If there is no

 14

enemy unit within 3 tiles of the sniper, the sniper will attack the unit that is closest

to the 3 tile radius, breaking ties with the danger calculation.

iv. Tank

The primary benefit of the tank as an attacking unit is its large area of

splash damage. Splash damage allows for the tank to kill more than one enemy

unit per attack. A tank estimates the ratio of total damage dealt to enemy units

and friendly units for each attacking tile. The tank will only attack a unit if the

estimated splash damage that it deals to adjacent squares injures enemies at a

higher ratio than it injures friends.

If the tank cannot find a unit to attack such that the ratio of the expected

value of damage done to enemies is above the designated level (default 1) then the

tank will not fire at all and will choose to move instead.

 15

V. Maps and Positioning

 A. The Map

The simulation maps are arranged in a hexagonal grid, 50 tiles high and 50 tiles

wide, with each tile on the map being adjacent to 6 other tiles. The traditional 2x2

quadrilateral grid is too simplistic and would not mimic battle movement as well as a

hexagonal grid. A unit can move north, south, northwest, southwest, northeast, and

southeast in the sWARm simulation. Each map has a corresponding height map that is a

grid of integers that represents the heights for each space on the map. This height map is

used for vision, movement, and attack calculations during the simulation.

B. Initial Positioning

In an earlier version of the sWARm simulation, units were dropped into random

positions on the map when they were created. It was determined that in a real battle, it is

far more likely that units in the same army will start together, rather than being dropped

randomly as if the opposing armies literally fell from the sky. With that in mind, the

default position for the “first” army was set to the northwest corner of the map, and the

“second” army to the southeast corner of the map. The units are randomly placed “close”

 16

to a certain corner point corresponding to which army they are in. It was while tinkering

with the starting positions that it was determined that perhaps the starting positions of

units within their armies should be slightly less random. It is logical that the faster units

ought to be biased to start toward the front of the army (so that they can get into

skirmishes early) and the slower units should be biased toward the rear of the army. This

was accomplished by multiplying the randomly generated x and y starting values for a

unit by its speed divided by its army’s average speed (Unit Speed/Avg. Army Speed).

When attempting to put the armies in their respective corners, it was discovered

that there were far too many “collisions” being generated by the random function (units

attempting to start where another unit had already been placed). Thus, a modification was

made by creating a customized Random class that gave a normally distributed random

value. This class took both an average for the random value, and a standard deviation as

parameters.

 17

C. The “Spread” Value

The sigma, or “spread” value of an army determines how far apart an army’s units

are at the start of the battle. This value, discovered while creating values for starting

positions of units, is actually the standard deviation of a normally distributed random

variable. It determines how much a random value can “deviate” from its given average

value. Thus, when sigma is small, an army’s units will be very close together, since they

will be more likely to be placed in a position that is close to the average starting point.

When sigma is large, however, an army will be very spread out. It was originally thought

that being able to determine how spread out an army would be was simply a nice feature

to have. However, after running a few movement simulations, it was discovered that the

sigma is quite important in determining how well an army does. Due to the decision and

movement rules implemented, pitting armies with different spread values against one

another creates very different results. An army with a larger spread value, for example, is

more likely to attempt to surround an army with a smaller spread value. This flanking

behavior would, all else being equal, allows an army with a larger sigma to triumph over

an army with a smaller sigma. Additionally, it is more likely that too large an initial

spread would make an army easy to kill, since its units could be picked off one by one.

Pitting two armies with large spread values against one another results in many small

skirmishes, whereas two armies with small spread values usually collide in one huge

battle.

 18

VI. Statistical Analysis Tracker:

 An integral part of the sWARm simulation is the built in statistical tracker that allows

easy analysis of data after a battle has completed. The statistical tracker was created using a

class that keeps track of all important events in the battle while the events occur. For example,

whenever a unit is killed, the tracker notes the type of unit killed, the type of unit that killed it,

and the damage dealt to the unit.

 The following is a sample data table created by stat tracker and formatted for readability.

The table shows many statistics that are important in determining the events that transpired

during the simulation. The beauty of the statistical tracker is that it is easily extensible and

numerous other statistics and ratios can be calculated.

Steps for Win 80 Army 1 Infantry Damage Dealt 129
Winning Army 1 Army 2 Infantry Damage Dealt 182
Army 1 Soldiers Remaining 14 Army 1 Mortar Damage Dealt 132
Army 2 Soldiers Remaining 1 Army 2 Mortar Damage Dealt 112
Army 1 Initial Size 40 Army 1 Sniper Damage Dealt 233
Army 2 Initial Size 40 Army 2 Sniper Damage Dealt 286
Army 1 Infantry Left 0 Army 1 Tank Damage Dealt 212
Army 2 Infantry Left 0 Army 2 Tank Damage Dealt 222
Army 1 Mortar Left 0 Tank Moves 667
Army 2 Mortar Left 0 Sniper Moves 876
Army 1 Sniper Left 8 Mortar Moves 902
Army 2 Sniper Left 1 Infantry Moves 1329
Army 1 Tanks Left 6
Army 2 Tanks Left 0

Sample Statistical Tracker Data
(Based on 10-10-10-10 armies pitted against each other)

Stat tracker is not very useful in terms of single runs, but in conjunction with batch mode,

it is a powerful tool for data analysis. The current version of the code does not allow direct

access to the statistical tracker except through comma delimited text files produced in batch

mode, which is what the data in the following analysis sections are based on.

 19

VII. Unit Distribution Analysis:

Unit distributions have a profound effect on the behavior of an army on the battlefield.

Homogenous armies have very specific strengths and weaknesses. The following is an analysis

of the attributes and behaviors of a homogenous army consisting of all of the same unit type.

A. Homogenous Distributions

i. Infantry

The advantages of an infantry army are plentiful. All the units are fast,

which means that they reach opponents quickly, attack more per turn, and move

more per turn. In terms of a real world model, the infantry units would be the

least costly of any of the units in this simulation. The disadvantages of an

infantry army are that the hit points of the units are relatively low and most

attacks by any other unit can kill the unit with one attack. Additionally, another

factor that cripples infantry armies against tough adversaries is the low vision

modifier of infantry units. Infantry units do not possess the range of a mortar, a

sharp-shooting sniper, or a high tech tank.

When pitted against homogenous armies of the same number of mortars,

snipers, and tanks, infantry armies were often defeated. Tank armies deal too

much damage for infantry to overcome, and the splash damage dealt by a tank

shell is often enough to kill an infantry unit. This is the case for mortars as well,

but infantry armies often did much more damage to mortar armies because of the

low hit points of the mortar units. Finally, in a battle against sniper units, infantry

were demolished. The sniper’s combination of range and accuracy are simply too

powerful for infantry units to overcome.

 20

Though the infantry often lost battles to homogenous armies of the same

number of units, this is quite unrepresentative of their true performance in battle.

Infantry units are the most cost efficient units in an army and most of the time, the

number of infantry is 2, 5, or even 10 times more than the number of mortars,

snipers or tanks.

Army A Army B Army A Win % Army B Win %
40 Infantry 40 Mortars 6.3% 93.7%
40 Infantry 40 Snipers 0.0% 100.0%
40 Infantry 40 Tanks 0.0% 100.0%
40 Infantry 20 Mortars 28.5% 71.5%
40 Infantry 20 Snipers 20.1% 79.9%
40 Infantry 10 Tanks 15.4% 84.6%

Table: Infantry win % versus other homogenous army types

 21

ii. Sniper

The range and accuracy of a sniper is unparalleled. The snipers can kill

many units before they enter its range and often hits its enemies. In terms of a

real world model, the sniper units would be rather expensive since their

equipment is very high tech and the training needed to produce a high quality

sniper requires large investments. Though snipers have a high accuracy and

range, if units get in close to a sniper, the sniper’s attack range advantage is

decimated. With low coverage and effectiveness, any unit that hits a sniper will

often kill it. Additionally, due to the time it takes to set up the gun and make the

precision attack, the speed of a sniper is relatively slow.

When pitted against homogenous armies of the same number of mortars,

infantry, and tanks, the snipers prevailed against the infantry often, and often were

defeated by the tanks usually, but not always, were defeated by mortars. As with

infantry, the snipers cannot handle the immense amount of damage tanks do in

terms of splash damage. Multiple tanks firing multiple shells quickly kill snipers

if the snipers allow the tanks to get in range. Snipers usually lose to mortars

because of their splash damage, but sometimes win if they get lucky and pick off

a few mortars early. This happens with mortars and not tanks because mortars

have a low hp, so a low probability attack that hits, may kill a mortar, when it

would only slightly damage a tank.

 22

Army A Army B Army A Win % Army B Win %
40 Snipers 40 Infantry 100.0% 0.0%
40 Snipers 40 Mortars 30.8% 69.2%
40 Snipers 40 Tanks 0.0% 100.0%
20 Snipers 40 Infantry 79.9% 20.1%
40 Snipers 30 Mortars 50.8% 49.2%
40 Snipers 20 Tanks 25.5% 74.5%

Table: Sniper win % versus other homogenous army types

 23

iii. Mortar

The mortar is a unit that does the damage of heavy artillery, but is not

nearly as slow. The mortar can make multiple attacks per round (2-3 on average),

do as much damage as a tank, and has comparable accuracy. Mortar units are

relatively inexpensive in the real world, in comparison to tanks and snipers but are

slightly more expensive than infantry units because the mortar machinery is

relatively complex. Unfortunately, mortar units have low hit points, do less

splash damage than tanks and don’t have the explosive capability of tank shells,

meaning that the units are easier to kill and do much less damage than a tank.

When pitted against homogenous armies of the same number of infantry,

snipers, and tanks, mortar armies performed on par. The interaction between

mortar armies and sniper and infantry armies has already been discussed, but the

interaction between mortar armies and tanks is very intriguing. The battles

between these two army types are often very close and each army wins battles

approximately 50% of the time. The reason tanks compete well with mortars is

because tanks have high hit points so they are not easily destroyed. Additionally,

tanks have high splash damage, which kills many mortars because of their low hit

points. The reason mortars deal well with tanks is because they have a high attack

rate and a high rate of damage, compounded with splash damage. These high

damage attack turns allow mortars to kill tanks in 1 or 2 turns, when other units

are unable to do so.

 24

Army A Army B Army A Win % Army B Win %
40 Mortars 40 Infantry 6.3% 93.7%
40 Mortars 40 Snipers 69.2% 30.8%
40 Mortars 40 Tanks 0.0% 100.0%
20 Mortars 40 Infantry 71.5% 28.5%
30 Mortars 40 Snipers 49.2% 50.8%
40 Mortars 20 Tanks 29.9% 70.1%

Table: Mortar win % versus other homogenous army types

 25

iv. Tank

The tank is by far the most dominant force on the battlefield. When pitted

against homogenous armies of the same number of infantry, snipers, and mortars,

the tanks almost always prevailed. This can be attributed to the large amount of

splash damage the tank does in conjunction with the high armor and high hit

points of the vehicle. Only when the number of tanks is cut in half or reduced by

a factor of 4 does the battle become more even.

This behavior is not totally unexpected since tanks are the most expensive

of all the battle units. The cost for a single tank easily exceeds the cost of

multiple infantry, snipers, and mortars.

 26

Army A Army B Army A Win % Army B Win %
40 Tanks 40 Infantry 100.0% 0.0%
40 Tanks 40 Mortars 100.0% 0.0%
40 Tanks 40 Snipers 100.0% 0.0%
10 Tanks 40 Infantry 84.6% 15.4%
20 Tanks 40 Mortars 70.1% 29.9%
20 Tanks 40 Snipers 74.5% 25.5%

Table: Tank win % versus other homogenous army types

 27

 B. Selected Heterogeneous Distributions

 i. 40 Snipers vs. 35 Mortars/35 Infantry

Army A Army B Army A Win % Army B Win %
40 Snipers 35 Mortars

35 Infantry
94.5% 5.5%

Battle Results

While developing unit types and attributes, it was concluded that a sniper

could not simply be an everyday, mass-produced soldier. A sniper was to be

“elite,” in that a single sniper unit ought to be a serious challenge to multiple low-

armor opposing units at range. This conclusion was reached when it was realized

that in reality, a truly good sniper was not a common thing. Snipers go through

years of training to effectively become killing machines, and are expected to

provide a great deal of support to their team.

The sniper unit was tested against the two other “human” units. Because a

sniper is made to be effective against flesh targets, introduction of the heavily

armored tanks would not have given an accurate statistics on the true value of the

unit. While snipers are deadly at long range, the combination of mortars and

infantry yields a balanced and devastating mixture of speed and power. Thus, a

batch of battle simulations, each consisting of 35 infantrymen and 35 mortars

against 40 snipers was run. To ensure that the units’ effectiveness was tested,

each unit defaulted to a max vision of 4, and each army to a sigma of 5.

 28

Apparently, the snipers were quite as effective as they were designed to

be. The extraordinarily high winning percentage can be attributed directly to a

sniper’s expansive vision and exacting accuracy. The sniper army kills every unit

attempting to get to the battle before they are close enough to respond. Once the

attrition of the opposing army has begun, what ensues is practically a domino

effect. Each unit of the opposition moves over his dead allies only to be mowed

down next.

The (rare) loss of the sniper army occurs only when it is distributed such

that the snipers do not start close enough together to effectively repel their

opposition. Since snipers are relatively slow moving compared to infantry,

starting the simulation with the army of snipers far apart from one another gives

infantry sufficient time to get close enough to attack (and soon be backed up by

mortar shells). Barring this scenario, however, snipers certainly prove their

superiority over other human units.

 29

ii. 50 Infantry/20 tanks vs. 45 Mortars/10 Snipers

Army A Army B Army A Win % Army B Win %
50 Infantry
20 Tanks

45 Mortars
10 Snipers

15.6% 84.4%

Battle Results

This situation was examined because it presented an opportunity for

testing of unit balance. In this battle, an aggressive force of fifty infantry and

twenty tanks (army A) fight a very defensive force of forty-five mortars and ten

snipers (army B). Army A is comprised of the very fast infantry units that often

get multiple moves or attacks per turn. It also has the incredibly rugged and

powerful tank, so as this force quickly advances it has the power to overrun

oppositions. Army B is, however, an almost perfect compliment to this attacker.

This force turns out to be defensive both due to the fact that it has the very long

ranged snipers, and the mortars, which target tanks to protect the rest of the units.

In observing and analyzing the simulation it becomes clear that the

advancing army of infantry is destroyed at range by the snipers leaving a

protected path for the mortars to advance and eradicate the force of tanks. This

battle strategy emerges each running of the simulation, even the times when army

A wins. For army A to win, it is imperative that the force of infantry advance

slowly, allowing the tanks to arrive at the battle with them, letting them overrun

army B.

 30

 iii. 20 Mortars/20 Tanks vs. 100 Infantry

Army A Army B Army A Win % Army B Win %
20 Mortars
20 Tanks

100 Infantry 42.8% 57.2%

Battle Results

In a battle of heavy artillery versus a large battalion of infantry, battle

outcomes are very uncertain. In a very close battle, on average the 100 infantry

prevail. The dynamic of this battle is very interesting in that as the armies enter

the center, units die off really quickly on both sides. The reason for this is

twofold. The first and most obvious reason for this massacre at the center of the

map is the fact that mortars and tanks do extremely high amounts of damage and

since the infantry units are often bunched together since there are so many of

them, many infantry units incur splash damage from the tanks and mortars. The

second reason for this huge massacre is the low hit points of the mortars in

conjunction with the extra attacks that infantry units get per turn. With so many

infantry on the map, when there are many opposing units at the center of the map,

they will incur a very large amount of damage because the infantry units are all

using multiple attacks. The outcome of this battle is largely determined by luck in

the first few attack steps of the simulation. The reason for this is that if the tanks

and mortars manage to kill enough infantry in their initial volley, the firepower

left in the infantry army is rarely enough to take down the heavily armored tanks.

 31

iv. 50 Infantry/10 Snipers vs. 40 Infantry/20 Mortars

Army A Army B Army A Win % Army B Win %
50 Infantry
10 Snipers

40 Infantry
20 Mortars

27.2% 72.8%

An interesting discovery was the army strategy that formed between

infantry and snipers on the same team. While snipers are powerful on their own,

in combination with infantry, a deadly strategy is developed. Because snipers are

inherently slower than most units, they arrive at the battle many steps after the

attacks have begun. The inclusion of infantry in the armies allow the snipers safe

distance and cover, while at the same time preventing enemy units from

advancing. This allows the snipers easy access to weak enemy units, for

maximum killing efficiency.

For this battle, armies of 50 infantry and 10 snipers were pitted against 40

infantry and 20 mortars. Because of the mortar unit’s attack range, the infantry /

sniper army’s default strategy was effectively countered. Both infantry battalions

reach each other and begin to exchange fire. Due to the mortar’s speed

advantage, they are able to form a line and set up before the snipers get within

range. Based on the mortar’s attack algorithm, they will attack the most

dangerous units within their vision, which are the opposing infantry, that is, until

the first sniper appears. The splash damage caused by the mortars damages the

snipers before they have a chance to “set up”. Thus by the time they are able to

engage, they are already sufficiently weakened.

 32

VIII. Vision Variable Analysis

 The vision of a unit is an extremely important factor in determining it’s effectiveness in

battle. A high vision allows an agent to do many things that include making better decisions

about where to move, attacking units that are further away, and avoiding dangerous units that are

far away. The following is an analysis of homogenous armies of the same size with variable

visions pitted against one another.

 33

 A. Infantry

In a battle between 40 infantry on each army, 1,000 simulations were run with

varying visions for each army. The number of wins was recorded for each army. The

following chart shows this data.

Max. Vis.
of Army A

Max. Vis.
of Army B

Effective Vis.
of Army A

Effective Vis.
of Army B

% Won by
Army A

% Won by
Army B

3 4 1.5 2 39.2% 60.8%
3 5 1.5 2.5 12.9% 87.1%
3 6 1.5 3 1.3% 98.7%
4 5 2 2.5 41.0% 59.0%
4 6 2 3 18.7% 81.3%
5 6 2.5 3 30.1% 69.9%

Infantry Vision Table

This table shows that as vision ratings are changed, battle outcomes are drastically

different. It can be easily concluded that for units with relatively small vision modifiers,

(units that cannot see very far) changing their maximum vision to be lower, decreases

their effectiveness immensely. Another reason that infantry are effective heavily by their

vision is the fact that they do relatively little damage, and have low hit points. This

means that if a unit can see the infantry from a distance, it can hit the enemy before the

enemy even gets within the range of the attacking unit. The conclusion is that vision is a

very important factor for units with low damage and low hit points.

 34

B. Mortar

In a battle between 40 mortars on each army, 1,000 simulations were run with

varying visions for each army. The number of wins was recorded for each army. The

following chart shows this data.

Max. Vis.
of Army A

Max. Vis.
of Army B

Effective Vis.
of Army A

Effective Vis.
of Army B

% Won by
Army A

% Won by
Army B

3 4 1.95 2.6 42.6% 57.4%
3 5 1.95 2.5 30.1% 69.9%
3 6 1.95 3 2.9% 97.1%
4 5 2.6 3.25 39.8% 60.2%
4 6 2.6 3.9 26.3% 73.7%
5 6 3.25 3.9 44.2% 55.8%

Mortar Vision Table

As expected, vision differentials have an impact on the outcome of battles

between mortars. There is however, a caveat to this. Vision does not affect mortars as

much as it affects infantry. The reason for this is most likely because of the splash

damage that mortars can do. When mortars attack, they do a massive amount of damage

to one target and a lot of splash damage to another target. This is usually not a function

of vision since an attack will always result in a relatively large amount of damage. The

reason for the big differentials in win % is due to the increased range of mortars with

higher vision. In conclusion, it can be seen that vision does affect mortars, but not as

much as infantry.

 35

C. Sniper

In a battle between 40 snipers on each army, 1,000 simulations were run with

varying visions for each army. The number of wins was recorded for each army. The

following chart shows this data.

Max. Vis.
of Army A

Max. Vis.
of Army B

Effective Vis.
of Army A

Effective Vis.
of Army B

% Won by
Army A

% Won by
Army B

3 4 3 4 24.0% 76.0%
3 5 3 5 2.1% 97.9%
3 6 3 6 0.0% 100.0%
4 5 4 5 36.2% 63.8%
4 6 4 6 10.1% 89.9%
5 6 5 6 39.5% 60.5%

Sniper Vision Table

As expected, vision has a huge impact on how well snipers fare in battle. The

major attributes that snipers rely on are their vision and their accuracy. If snipers cannot

see far, they can often be picked off from a distance by other snipers, or they will be

mauled in close combat. When a sniper’s vision increases, its attack range increases as

well. The above data shows that with a 3 to 5 vision differential, the army with less

vision wins only 2.1% of the battles it engages in with the superior army. This is a direct

result of the fact that the snipers with the better vision get multiple attempts to shoot

enemy units before the enemies can even see the attackers. Due to the sniper’s low hit

points, the sniper must rely on eliminating opponents early, before they enter attacking

range. This is a major reason that snipers are the agent most affected by vision.

 36

D. Tank

In a battle between 40 tanks on each army, 1,000 simulations were run with

varying visions for each army. The number of wins was recorded for each army. The

following chart shows this data.

Max. Vis.
of Army A

Max. Vis.
Army B

Effective Vis.
of Army A

Effective Vis.
of Army B

% Won by
Army A

% Won by
Army B

3 4 2.4 3.2 38.6% 61.4%
3 5 2.4 4 21.2% 78.8%
3 6 2.4 4.8 14.3% 85.7%
4 5 3.2 4 41.0% 59.0%
4 6 3.2 4.8 32.1% 67.9%
5 6 4 4.8 38.3% 61.7%

Tank Vision Table

Though affected by vision, tanks are at a much smaller disadvantage if they are

given a smaller vision. Whether or not a tank is given a large vision radius, the damage it

deals, remains the same. The high amount of damage dealt by the tanks main attack and

splash damage make the tank a dangerous unit regardless of its vision. The difference in

win percentage here is largely due to vision giving a tank more information about attacks.

A tank with a larger vision radius will be able to see more spaces to attack and therefore

will be able to pick spaces that deal greater amounts of splash damage to enemies. For

example, if there is a space that is a distance of 4 from a tank with a vision of 5 that will

do high amounts of damage to the enemy, the tank can attack that space since it is in the

vision of the tank. However, if that same scenario existed for a tank with a vision of 3,

the tank would not be able to see this space and make an attack that would deal high

amounts of damage. Instead, the tank would be relegated to choosing between fewer

spaces that allow less damage to be dealt. The examples illustrates why vision is

important to high damage units and low damage units alike.

 37

IX. Spread Analysis

 The sigma value of an army’s initial distribution significantly affects its performance and

apparent strategy in battle. After several runs of homogenous armies with different “spread”

values, it was determined that various combinations of this variable in battle result in relatively

predictable outcomes.

Blue Army with a Sigma of 10, Red with a Sigma of 3

 38

A. Infantry

Sigma Army 1 Sigma Army 2 Army 1 Winning % Army 2 Winning %
3 5 24.5% 75.5%
3 10 9.3% 90.7%
5 10 5.6% 94.4%

Infantry Spread Table

There is no question that infantry behave quite differently from mortar units with

variation of spread values. The reason for the extremely high winning percentage of

infantry armies with larger spread values than their opposition can be attributed to the

infantry unit’s speed. An infantry army is actually able to move fast enough to properly

flank its enemy if it has a good enough difference in spread to do so. When an army

successfully flanks its opposition, it is decidedly difficult for its enemy to succeed against

the frequency of attacks it receives from a superior position.

The losses of the army with a better spread can be attributed to the chance that by

random movement and positioning, it is unable to successfully create a flanking

formation in time. This will usually result in the more spread-out army sending one to

two units at a time into battle, where they are promptly slaughtered by the opposition. It

is apparent that a more tightly distributed army is slightly more successful should such a

slip-up occur, since they are able to quickly dispense with the trickle-in opposition using

attacks from multiple units. A slightly more spread-out army will find it more difficult to

take advantage of a flanking error from the opposition, since it will usually end up

engaging its enemy in several smaller skirmishes.

 39

B. Mortar

Sigma Army 1 Sigma Army 2 Army 1 Winning % Army 2 Winning %
3 5 94.7% 5.3%
3 10 90.4% 9.6%
5 10 65.5% 34.5%

Mortar Spread Table

It would appear that in a battle comprised entirely of mortar units, it is far more

beneficial to retain a tight formation, particularly against an army attacking with a relaxed

arrangement. One could probably attribute this outcome to the devastating power of a

mortar attack. When an army is positioned such that several mortars can simultaneously

attack one single unit, it is certainly to that army’s advantage. This is the scenario created

when a more loosely arranged mortar army attempts to attack one that is more tightly

knit. The former will usually have its units straggle one by one into the waiting attacks of

several units of the opposing army, which practically eliminates most chance of a victory.

The variation in winning percentage, particularly what occurs when an army with

a sigma of 10 is able to defeat an army with a sigma of 3, can be easily explained. If an

army with a large spread is able to successfully flank a tighter army by chance of random

movement, the flanking army will win every time. This is because surrounding an army

with weapons that deal splash damage will result in several units being injured with every

shot from the flanking army. The surrounded army will not be able to deal nearly as

much splash damage to the more spread-out army, and will thus be eliminated quickly.

It appears that the effect of a tighter spread is far less relative than would have

been originally predicted since an army with a sigma of 5 was only able to beat an army

with a sigma of 10 65.5% of the time. The effects of spread values on a mortar battle

thus appear to take on an exponential distribution, where the larger the numbers get, the

less important spread becomes in outcome.

 40

C. Sniper

Sigma Army 1 Sigma Army 2 Army 1 Winning % Army 2 Winning %
3 5 26.3% 73.7%
3 10 39% 61%
5 10 29.2% 70.8%

Sniper Spread Table

The results of the sniper battles were rather surprising. It was originally

hypothesized that due to the sniper unit’s considerable range, that a tightly distributed

army of snipers would not allow itself to be flanked by an opposing army. It appears

though, that while the range of the sniper defrays some of the flanking behavior (the

percentages for a small-sigma sniper army repelling an opposing army with a larger

sigma are far better than those for infantry), snipers are still quite susceptible to this

flanking strategy.

The jump in winning percentages for a sigma-3 army when it faces a sigma-10

army can be explained again by a sigma-3 army’s ability to take advantage of flanking

slip-ups. If the opposing army, by chance, happens to have its units deployed incorrectly

to flank, it will result in its units trickling slowly into the main battle. A tightly distributed

enemy will be able to deal with such an attack quickly. This is particularly true when it

comes to sniper armies, since there is less chance of recovery from a flanking error, due

to the units’ long range.

 41

D. Tank

Sigma Army 1 Sigma Army 2 Army 1 Winning % Army 2 Winning %
3 5 29.4% 70.6%
3 10 37.5% 62.5%
5 10 28.8% 71.2%

Tank Spread Table

Interestingly, the outcome of the tank battle simulations was practically the same

as the sniper simulations. Instead of rehashing the reasons that certain sigma values

created different outcomes (flanking, taking advantage of errors, etc.), it is relevant to

note some of the similarities between the tank and the sniper that make them behave

similarly under different spread conditions. Both the tank and the sniper are slow units,

and so actually positioning an army composed entirely of either unit into flanking

formation is difficult to achieve before its enemy attacks. Both units also have long range,

and a devastating attack, which aid both in the prevention of flanking and in maintenance

of flanking formation once it is accomplished.

The major differences between the sniper and the tank lie in the hit-points of the

respective units and the fact that that the tank’s attack deals splash damage. It would

appear that the differences are somewhat negated in a homogeneous battle, since the

tank’s heavy armor practically sheds splash damage. Also, since the damage to hit-point

ratio for a tank is approximately the same as for a sniper, the two will survive practically

the same number of shots from their enemy.

 42

X. EINSTein Simulation Correlations

After some research, it was discovered that there was an agent based land-warfare model

very similar to sWARm. The EINSTein model, or Enhanced ISAAC Neural Simulation Toolkit

(where ISAAC stands for Irreducible Semi-Autonomous Adaptive Combat), uses many of the

same rules that sWARm implements. In EINSTein, agents are randomly assigned a certain

“personality,” and will behave according to that personality. This can affect how often an agent

is able to attack, how much it will move, and whether it will prefer attack or defense. This is

very similar to sWARm’s creation of various unit types, by which each unit type will behave

very differently from another by nature.

 Interestingly, movement selection in the EINSTein model is implemented practically the

same way it is in sWARm. Each possible move is assigned a “penalty” based on the ratio of

visible enemies to friends. The move with the lowest penalty value is what is chosen (in the case

of a tie, a random move is selected). This is almost identical to the move scoring system used in

the sWARm.

 The actual execution of combat is where sWARm begins to differ significantly from

EINSTein. In the EINSTein model, an agent is allowed to fire at all agents in its visible range in

a given turn. When hit, an agent’s status will move from “alive” to “injured”, and then from

“injured” to “dead”. An injured agent will attempt to retreat from a battle until it is able to heal

over a certain amount of time. A dead agent is, of course, removed from the simulation. This

representation of damage is far different from sWARm’s hit point and armor system. It was also

decided that an individual agent ought to choose whether to fight or retreat based on the status of

his army, rather than his own life status. The EINSTein model also doesn’t take various types of

 43

terrain or altitude into account in combat execution. Both of these are factors that can make or

break the outcome of a battle in sWARm.

 One incredible feature of the EINSTein model that sWARm was unable to implement is

the ability to create “Meta-Rules.” Meta-Rules alter the design of agent personality types and

distribution to make for various controlled battle scenarios. For example, a certain Meta-Rule

can prevent an agent from moving toward friendly agents once it is surrounded by a certain

number of enemy agents (sacrificing itself to prevent bringing the rest of its team into danger).

Another Meta-Rule could split an army into groups of agents that attempt to flank the enemy, or

try to split the battle in many small skirmishes that are easier to win. It is feasible, given more

time, that sWARm would be able to restructure the classes in the simulation to allow an average

user to make such modifications to various unit types in a GUI interface, but currently, these

medications are beyond the scope of sWARm.

 sWARm was created without research about EINSTein because it was felt a post-creation

comparison would be beneficial because similarities and differences could be highlighted and the

reason for the similarities and differences could be analyzed. sWARm seeks to implement a

larger breadth of attributes and variables than EINSTein, to compensate for sWARm’s far less

complex decision algorithms because the sWARm simulation designers do not have sufficient

differential equations backgrounds to create EINSTEIN-esque differential algorithms.

 44

XI. Conclusion

 At the beginning of “project sWARm”, goals were lofty and expectations were high. By

the end of the project, it was apparent that there are an infinite number of variables and variable

interactions that can be utilized in a war simulation. sWARm utilized many features of battle

simulations such as vision, battlefield altitudes and terrain, and differing unit types and

strategies. While these are fundamental to any battle simulation, there is much more that can be

added to make the simulation even more realistic.

Though sWARm does not even come close to mimicking real battle simulations, (it will

be difficult for any simulation to do so) it does provide a solid foundation for simulations to

build upon it. The logic functions and decision trees are self-contained, which means that

decisions can be inserted into a decision tree to increase the complexity of the simulation.

Additionally, each of the unit classes is given different, specialty behaviors which allow for the

simulation to add more units with different abilities and different movement behaviors.

In conclusion, the complexity of sWARm allows it to be useful to those who wish to run

simulations and compile test data and to those who wish to just run battles for fun and watch

them play out in graphical mode. The sWARm simulation shows in many ways how the

behavior of individual agents in an army is integral to the success or failure of the army itself.

The sWARm simulation, though complex, is just a small sample of the complexities of battle

simulations and agent based simulations.

 45

XII. Simulation Execution Instructions

A. Create a new directory and unzip sWARm.zip to that directory.

B. Compilation instructions: (all commands are executed from the root project directory)

i. For batch mode:
mkdir batchclasses
javac –d batchclasses –sourcepath srcBatch –classpath batchclasses srcBatch/sWARm/Main/*.java

ii. For GUI mode:
mkdir GUIclasses
javac –d GUIclasses –sourcepath srcGUI –classpath GUIclasses srcGUI/sWARm/Main/*.java

iii. For 3D mode:
mkdir 3Dclasses
javac –d 3Dclasses –sourcepath src3D –classpath 3Dclasses src3D/sWARm/Testing/*.java

C. Execution instructions: (all commands are executed from the root project directory)

i. For batch mode

 java –classpath batchclasses sWARm.Main.BatchHandler

Upon execution of BatchMode, a set of simulations will begin generating data in a
text file in the root directory.

ii. For GUI mode

 java –classpath GUIclasses sWARm.Main.GuiMain

 Upon execution of GuiMain, a window will come up that allows parameter entry.
To begin a simulation, enter up to 100 units per army, click “Load Parameters” and then
“Start Simulation”.

iii. For 3D Mode
java –classpath 3Dclasses sWARm.Testing.SimTest

Upon execution of SimTest, a window will come up that allows parameter entry.
To begin a simulation, enter up to 100 units per army, click “Load Parameters” and then
“Start Simulation”. This will cause a full screen window to appear on which graphics are
rendered.

Note: In 2D GUI mode the following colors represent the corresponding unit types:
Infantry – Black, Mortar –Orange, Sniper – Green, Tank -White

 46

